橢圓E:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2,過(guò)F1作垂直于橢圓長(zhǎng)軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過(guò)F1的直線l交橢圓于A,B兩點(diǎn),判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.

(1) +=1   (2)存在,斜率k的取值范圍為-<k<

解析解:(1)依題意
解得a2=4,b2=3,
∴橢圓的方程為+=1.
(2)①當(dāng)過(guò)F1的直線AB的斜率不存在時(shí),
不妨取A(-1,),B(-1,-
·=,顯然∠AF2B不為鈍角.
②直線l的斜率為k,l方程為y=k(x+1),

消去y,整理得(3+4k2)x2+8k2x+4k2-12=0.
∵直線l與橢圓交于兩點(diǎn),
∴Δ=(8k2)2-4(3+4k2)(4k2-12)=4×36(k2+1)>0.
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=-,x1·x2=.
=(x1-1,y1),=(x2-1,y2).
∵∠AF2B為鈍角,
·<0.
即(x1-1)(x2-1)+y1y2<0,
整理得(k2+1)x1x2+(k2-1)(x1+x2)+k2+1<0.
即(k2+1)·-(k2-1)·+k2+1<0,
整理得7k2<9,
解得-<k<.
∴存在滿足條件的直線l,
其斜率k的取值范圍為-<k<.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn),求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P、B在橢圓上,.
 
(1) 求直線BD的方程;
(2) 求直線BD被過(guò)P、A、B三點(diǎn)的圓C截得的弦長(zhǎng);
(3) 是否存在分別以PB、PA為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C1:+=1(a>b>0),拋物線C2:x2+by=b2.

(1)若C2經(jīng)過(guò)C1的兩個(gè)焦點(diǎn),求C1的離心率;
(2)設(shè)A(0,b),Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△AMN的垂心為B(0,b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過(guò)點(diǎn)(,).

(1)求圓C和橢圓D的方程;
(2)若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過(guò)點(diǎn)P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn).過(guò)點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過(guò)點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),作直線QG,問(wèn)這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過(guò)P作PM⊥x軸于M,N為PM上一點(diǎn),且
(1)求點(diǎn)N的軌跡C的方程;
(2)若A(2,1),B(3,0),過(guò)B的直線與曲線C相交于D、E兩點(diǎn),則是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案