己知⊙O:x2+y2=6,P為⊙O上動點,過P作PM⊥x軸于M,N為PM上一點,且.
(1)求點N的軌跡C的方程;
(2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點,則是否為定值?若是,求出該值;若不是,說明理由.
(1) (2)
解析試題分析:(1) 求動點軌跡方程的步驟,一是設所求動點坐標,涉及兩個動點問題,往往是通過相關點法求對應軌跡方程,此時也要設已知軌跡上的動點,則,二是列出動點滿足的條件,用未知動點坐標表示已知動點坐標,即,三是代入化簡,,四是去雜,主要看是否等價轉化,本題無限制條件, (2)定值問題,往往是坐標化簡問題,即多參數消元問題. 利用斜率公式,直線方程化簡,再利用韋達定理代入化簡得常數,從過程看是四元變?yōu)槎僮優(yōu)橐辉,最后變(yōu)槌,一個逐步消元的運算過程,有運算量,無思維量.
試題解析:(1)設,,則,,
由,得, 3分
由于點在圓上,則有,即.
點的軌跡的方程為. 6分
(2) 設,,過點的直線的方程為,
由消去得: ,其中
; 8分
10分
是定值. 13分
考點:動點軌跡,定值問題
科目:高中數學 來源: 題型:解答題
橢圓E:+=1(a>b>0)的左、右焦點分別為F1,F2,焦距為2,過F1作垂直于橢圓長軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過F1的直線l交橢圓于A,B兩點,判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.
(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓C1:+=1(a>b>0)的左、右頂點分別為A,B,點P是雙曲線C2:-=1在第一象限內的圖象上一點,直線AP,BP與橢圓C1分別交于C,D點,若S△ACD=S△PCD.
(1)求P點的坐標.
(2)能否使直線CD過橢圓C1的右焦點,若能,求出此時雙曲線C2的離心率;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的一個頂點A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程.
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0).
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程.
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
(3)過原點O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓的離心率為,且經過點過坐標原點的直線與均不在坐標軸上,與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標原點O的直線與C2相交于點A,B,定點M的坐標為(0,-1),直線MA,MB分別與C1相交于點D,E.
(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com