在極坐標系中,已知圓A的圓心為(4,0),半徑為4,點M為圓A上異于極點O的動點,求弦OM中點的軌跡的極坐標方程.
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:由題意知,圓A的極坐標方程為ρ=8cosθ,設弦OM中點為N(ρ,θ),則M(2ρ,θ),根據(jù)點M在圓A上,建立關于ρ、θ的等式,即為所求.
解答: 解:由題意知,圓A的極坐標方程為ρ=8cosθ,
設弦OM中點為N(ρ,θ),則M(2ρ,θ),
因為點M在圓A上,所以2ρ=8cosθ,即 ρ=4cosθ,
又點M異于極點O,所以ρ≠0,
所以弦OM中點的軌跡的極坐標方程為ρ=4cosθ (ρ≠0).
點評:本題主要考查簡單曲線的極坐標方程,求點的軌跡方程的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若cos2α=
7
8
,α∈(
4
,π),則sinα等于(  )
A、
3
16
B、
1
4
C、
15
8
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1=1,an=an-1+3n-1,求數(shù)列{an}的通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△SCD中,SD=3,CD=
5
,cos∠SCD=-
1
5
5
,SA=2AD,AB⊥SD交SC于B,M為SB上點,且SM=2MB,將△SAB沿AB折起,使平面SAB⊥平面ABCD

(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)設點N是直線CD上的點,且
DN
=
1
2
NC
,求MN與平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的一個焦點為F(2,0),且離心率為
6
3

(Ⅰ)求橢圓方程;
(Ⅱ)斜率為k的直線l過點F,且與橢圓交于A,B兩點,為直線x=3上的一點,若△ABP為等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1中,D,E,F(xiàn)分別為AA1,CC1,AB的中點,M為BE的中點.求證:C1D∥平面B1FM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設隨機變量ξ服從正態(tài)分布N(0,1),P(ξ>1)=
1
4
,則P(-1<ξ<1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a>0).
(1)當a=1,求f(x)在(2,2+△x)上的平均變化率;
(2)當a=4,求其斜率為0的切線方程;
(3)求證:“對勾函數(shù)”圖象上的各點處切線的斜率小于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中點.現(xiàn)沿AD把平面PAD折起,使得PA⊥AB(如圖乙所示),E、F分別為BC、AB邊的中點.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角P-ED-F的正切值大小 
(Ⅲ)在PA上找一點G,使得FG∥平面PDE.

查看答案和解析>>

同步練習冊答案