如圖,直線PA為圓O的切線,切點為A,直徑BC⊥OP,連接AB交PO于點D.
(1)證明:PA=PD;
(2)求證:PA•AC=AD•OC.
考點:與圓有關的比例線段
專題:直線與圓
分析:(1)連結OA,由已知條件推導出∠PAD=∠PDA,即可證明PA=PD.
(2)連結OA,由已知條件推導出△PAD∽△OCA,由此能證明PA•AC=AD•OC.
解答: (1)證明:連結AC,
∵直徑BC⊥OP,連接AB交PO于點D,BC是直徑,
∴∠C+∠B=90°,∠ODB+∠B=90°,
∴∠C=∠ODB,
∵直線PA為圓O的切線,切點為A,
∴∠C=∠BAP,
∵∠ADP=∠ODB,∴∠BAP=∠ADP,
∴PA=PD.
(2)連結OA,由(1)得∠PAD=∠PDA=∠ACO,
∵∠OAC=∠ACO,∴△PAD∽△OCA,
PC
OC
=
AD
AC
,∴PA•AC=AD•OC.
點評:本題考查線段相等的證明,考查線段乘積相等的證明,是中檔題,解題時要認真審題,注意弦切角定理的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若如圖所示的程序框圖輸出的S是30,則在判斷框中M表示的“條件”應該是( 。
A、n≥3B、n≥4
C、n≥5D、n≥6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),已知點(1,e)和(e,
3
2
)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓的方程;
(2)設A、B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,若|AF1|-|BF2|=
6
2
,求直線AF的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=2px(p>0)上橫坐標為1的點M到拋物線C焦點F的距離|MF|=2.
(1)試求拋物線C的標準方程;
(2)若直線l與拋物線C相交所得的弦的中點為(2,1),試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的方程為:ax2+ay2-2a2x-4y=0(a≠0,a為常數(shù)).
(1)判斷曲線C的形狀;
(2)設曲線C分別與x軸、y軸交于點A、B(A、B不同于原點O),試判斷△AOB的面積S是否為定值?并證明你的判斷;
(3)設直線l:y=-2x+4與曲線C交于不同的兩點M、N,且|OM|=|ON|,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C2分別相交于A、B兩點.
(Ⅰ)寫出拋物線C2的標準方程;
(Ⅱ)求證:以AB為直徑的圓過原點;
(Ⅲ)若坐標原點O關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,B(-2,0),C(2,0),△ABC的周長為12,動點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設P、Q為E上兩點,
OP
OQ
=0
,過原點O作直線PQ的垂線,垂足為M,證明|OM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx,g(x)=
x
-
1
x

(Ⅰ)當x≥1時,求f(x)-g(x)的最大值;
(Ⅱ)求證:
x
x-1
lnx
x+1
2
,?x>1恒成立;
(Ⅲ)求證:
n2
2
+
3n
8
n
k=1
1
ln
2k+1
2k-1
n2
2
+
n
2
(n≥2,n∈N).(參考數(shù)據(jù):ln3≈1.1,ln5≈1.6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax-cosx,x∈[
π
4
π
3
],若?x1∈[
π
4
,
π
3
],?x2∈[
π
4
π
3
],x1≠x2
f(x2)-f(x1)
x2-x1
<0則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習冊答案