【題目】已知數(shù)列滿足:,,且對(duì)一切,均有.

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前n項(xiàng)和;

3)設(shè)),記數(shù)列的前n項(xiàng)和為,問(wèn):是否存在正整數(shù),對(duì)一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】1)證明見(jiàn)解析; 23)存在,23

【解析】

(1)原式兩邊同時(shí)除以再根據(jù)等差數(shù)列定義證明即可.

(2)代入(1)中求得的數(shù)列的通項(xiàng)公式,再利用數(shù)列前項(xiàng)積與通項(xiàng)的方法求解即可.

(3)根據(jù)(2)中的方法求得關(guān)于的解析式,再將代入,再根據(jù)正整數(shù),分情況討論的取值,的關(guān)系式看成函數(shù)進(jìn)行單調(diào)性的分析即可.

(1)證明:由,,兩邊除以,得

,即,

所以,數(shù)列為等差數(shù)列,所以,

(2)當(dāng)時(shí),(1),

當(dāng)時(shí)有,

當(dāng)時(shí)有,,兩式相除有.

當(dāng)時(shí), 也成立.,

(3)由題,(2).

因?yàn)閷?duì)一切,均有恒成立,

所以當(dāng)時(shí),.

,,,,故不成立.

,,

,,,,.

且當(dāng)時(shí),. .故成立.

,,,,

,.

又當(dāng)時(shí), ,,故成立.

,,

,.

上是增函數(shù),.所以.

,故不成立.

綜上所述, 的取值為23;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某居民最近連續(xù)幾年的月用水量進(jìn)行統(tǒng)計(jì),得到該居民月用水量 (單位:噸)的頻率分布直方圖,如圖一.

(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該居民月平均用水量;

2)已知該居民月用水量與月平均氣溫(單位:℃)的關(guān)系可用回歸直線模擬.2019年當(dāng)?shù)卦缕骄鶜鉁?/span>統(tǒng)計(jì)圖如圖二,把2019年該居民月用水量高于和低于的月份作為兩層,用分層抽樣的方法選取5個(gè)月,再?gòu)倪@5個(gè)月中隨機(jī)抽取2個(gè)月,求這2個(gè)月中該居民恰有1個(gè)月用水量超過(guò)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左,右焦點(diǎn)分別為,,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),則a的值為______,若直線經(jīng)過(guò)線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文化博大精深,源遠(yuǎn)流長(zhǎng),每年都有大批外國(guó)游客入境觀光旅游或者學(xué)習(xí)等,下面是年至年三個(gè)不同年齡段外國(guó)入境游客數(shù)量的柱狀圖:

下面說(shuō)法錯(cuò)誤的是:(

A.年至年外國(guó)入境游客中,歲年齡段人數(shù)明顯較多

B.年以來(lái),三個(gè)年齡段的外國(guó)入境游客數(shù)量都在逐年增加

C.年以來(lái),歲外國(guó)入境游客增加數(shù)量大于歲外國(guó)入境游客增加數(shù)量

D.年,歲外國(guó)入境游客增長(zhǎng)率大于歲外國(guó)入境游客增長(zhǎng)率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的兩焦點(diǎn)與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,右焦點(diǎn)到右頂點(diǎn)的距離為1.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)是否存在與橢圓C交于AB兩點(diǎn)的直線l,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】五行是中國(guó)古代哲學(xué)的一種系統(tǒng)觀,廣泛用于中醫(yī)、堪輿、命理、相術(shù)和占卜等方面.古人把宇宙萬(wàn)物劃分為五種性質(zhì)的事物,也即分成木、火、土、金、水五大類,并稱它們?yōu)?/span>五行”.中國(guó)古代哲學(xué)家用五行理論來(lái)說(shuō)明世界萬(wàn)物的形成及其相互關(guān)系,創(chuàng)造了五行相生相克理論.相生,是指兩類五行屬性不同的事物之間存在相互幫助,相互促進(jìn)的關(guān)系,具體是:木生火,火生土,土生金,金生水,水生木.相克,是指兩類五行屬性不同的事物之間是相互克制的關(guān)系,具體是:木克土,土克水,水克火、火克金、金克木.現(xiàn)從分別標(biāo)有木,火,土,金,水的根竹簽中隨機(jī)抽取根,則所抽取的根竹簽上的五行屬性相克的概率為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為整數(shù),其前n項(xiàng)和為Sn.規(guī)定:若數(shù)列{an}滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第r﹣1項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}“r關(guān)聯(lián)數(shù)列

1)若數(shù)列{an}“6關(guān)聯(lián)數(shù)列,求數(shù)列{an}的通項(xiàng)公式;

2)在(1)的條件下,求出Sn,并證明:對(duì)任意n∈N*,anSn≥a6S6;

3)已知數(shù)列{an}“r關(guān)聯(lián)數(shù)列,且a1=﹣10,是否存在正整數(shù)k,mmk),使得a1+a2+…+ak1+ak=a1+a2+…+am1+am?若存在,求出所有的k,m值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩隊(duì)參加聽(tīng)歌猜歌名游戲,每隊(duì).隨機(jī)播放一首歌曲, 參賽者開(kāi)始搶答,每人只有一次搶答機(jī)會(huì),答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分, 假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中人答對(duì)的概率分別為,且各人回答正確與否相互之間沒(méi)有影響.

(1)若比賽前隨機(jī)從兩隊(duì)的個(gè)選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個(gè)隊(duì)的概率;

(2)表示甲隊(duì)的總得分,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(3)求兩隊(duì)得分之和大于4的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案