已知函數(shù)y=f(x)是定義在R上的函數(shù),對于任意,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù),又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時,函數(shù)取得最小值,最小值為-5.

(1)證明:f(1)+f(4)=0;

(2)試求y=f(x),x∈[1,4]的解析式;

(1)證明:∵y=f(x)是以5為周期的周期函數(shù),∴f(4)=f(4-5)=f(-1),又y=f(x)(-1≤x≤1)是奇函數(shù),∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0.

(2)解:當x∈[1,4]時,由題意,可設f(x)=a(x-2)2-5(a≠0),由f(1)+f(4)=0得a(1-2)2-5+a(4-2)2-5=0,解得a=2,∴f(x)=2(x-2)2-5(1≤x≤4).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關系為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數(shù)a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習冊答案