已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線(xiàn)方程;
(2)求y=f(x)的單調(diào)區(qū)間.
分析:(1)欲求在x=
1
e
處的切線(xiàn)方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=
1
e
處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線(xiàn)的斜率.從而問(wèn)題解決.
(2)先求出函數(shù)的定義域,求出導(dǎo)函數(shù),令導(dǎo)函數(shù)小于0以及導(dǎo)數(shù)大于0,求出x的范圍,寫(xiě)出區(qū)間即為單調(diào)區(qū)間.
解答:解:(1)∵已知函數(shù)y=f(x)=
lnx
x
,
∴f′(x)=
1-lnx
x2
,k=f′(
1
e
)=2e2,且f(
1
e
)=e,
所以切線(xiàn)方程為y-e=2e2(x-
1
e
),即2e2x-y-e=0…(6分)
(2)易知x>0,由f'(x)>0得0<x<e,所以f(x)遞增區(qū)間:(0,e)…(10分)
f'(x)<0得x>e,遞減區(qū)間:(e,+∞) …(12分).
點(diǎn)評(píng):本小題主要考查直線(xiàn)的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線(xiàn)方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說(shuō)明為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿(mǎn)足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時(shí)的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個(gè)為真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案