設(shè)aR,函數(shù)(ax2+a+1),其中e是自然對(duì)數(shù)的底數(shù).

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性;

(Ⅱ)當(dāng)-1<a<0時(shí),求函數(shù)f(x)在[1,2]上的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=
13
x3-ax+3
在區(qū)間(-2,-1)內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=x2+ax+4.(1)解不等式f(x)+f(-x)<10x;(2)求f(x)在區(qū)間[1,2]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、設(shè)a∈R,函數(shù)f(x)=e-x(a+ax-x2)(e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(-1,f(-1))處的切線方程;
(Ⅱ)判斷f(x)在R上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰安二模)設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(I)求f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)無零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山一模)設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(1)若a=2,求曲線y=f(x)在P(1,-2)處的切線方程;
(2)若f(x)無零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若f(x)有兩個(gè)相異零點(diǎn)x1,x2,求證:x1•x2>e2

查看答案和解析>>

同步練習(xí)冊(cè)答案