【題目】某校100名學(xué)生期末考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是.

(1)若成績(jī)?cè)?/span>的學(xué)生中男生比女生多一人,從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人都是男生的概率;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分.

【答案】(1);(2).

【解析】分析:(1) 基本事件有,共種,其中都是男生的有,利用古典概型概率公式可得結(jié)果;(2) 每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和,即可得到該校名學(xué)生語(yǔ)文成績(jī)的平均分.

詳解:(1)成績(jī)?cè)?/span>的學(xué)生共有5人,其中男生3人,女生2人,分別記為1,2,3,4,5,其中1,2,3為男生;

選出兩人,基本事件有,共10種,

其中都是男生的有3種,故概率為.

(2)平均分的估計(jì)值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書(shū)里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.在“楊輝三角”中,已知第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,……,則此數(shù)列的前56項(xiàng)和為( )

A. 2060B. 2038C. 4084D. 4108

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,對(duì)于任意實(shí)數(shù),橢圓被下列直線所截得的弦長(zhǎng)與被直線所截得的弦長(zhǎng)不可能相等的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.

(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰(shuí)摸出的球上標(biāo)的數(shù)字大誰(shuí)就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50人測(cè)量身高.據(jù)測(cè)量,被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成八組:第一組;第二組;第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在以上(含)的人數(shù);

2)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖;

3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩人,記他們的身高分別為,求滿足的事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出v的值為(
A.210﹣1
B.210
C.310﹣1
D.310

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的通項(xiàng)公式為 ),數(shù)列定義如下:對(duì)于正整數(shù), 是使得不等式成立的所有中的最小值.

1)若 ,求

2)若, ,求數(shù)列的前項(xiàng)和公式;

3)是否存在,使得 ?如果存在,求的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知扇形的周長(zhǎng)為8,面積是4,求扇形的圓心角.

(2)已知扇形的周長(zhǎng)為40,當(dāng)它的半徑和圓心角取何值時(shí),才使扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若對(duì)為自然對(duì)數(shù)的底數(shù)),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案