【題目】設(shè),求解下列問題:(1)求 的單調(diào)區(qū)間;(2)在銳角 △ A B C 中,角 ∠ A , B , C ,的對邊分別為 a , b , c ,若 = 0 , a = 1 ,求 △ A B C 面積的最大值.
(1)求的單調(diào)區(qū)間;
(2)在銳角中,角,的對邊分別為,若,求面積的最大值.

【答案】
(1)

函數(shù)的單電遞增區(qū)間是;

單調(diào)遞減區(qū)間是


(2)


【解析】(1)由題意知
可得
可得
所以函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是
(2)由
由題意知為銳角,所以
有正弦定理:
可得:
,當(dāng)且僅當(dāng)時等號成立.
因此
所以面積的最大值為
【考點精析】認真審題,首先需要了解基本不等式(基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式上恒成立,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖北)設(shè). 若p:成等比數(shù)列;
q:,則( )
A.p是q的充分條件,但不是q的必要條件
B.p是q的必要條件,但不是q的充分條件
C.p是q的充分必要條件
D.p既不是q的充分條件,也不是q的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,等差數(shù)列滿足

1)分別求數(shù)列的通項公式;

2)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(I)求f(x)的最小正周期;
(II)求f(x)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,離心率為 , 點在橢圓上且位于第一象限,直線被圓截得的線段的長為.(1)求直線 F M 的斜率(2)求橢圓的方程(3)設(shè)動點 P 在橢圓上,若直線FP的斜率大于,求直線OP( O 為原點)的斜率的取值范圍
(1)求直線的斜率
(2)求橢圓的方程
(3)設(shè)動點在橢圓上,若直線的斜率大于 , 求直線為原點)的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖北)一種畫橢圓的工具如圖1所示.是滑槽的中點,短桿ON可繞O轉(zhuǎn)動,長桿MN通過N處鉸鏈
與ON連接,MN上的栓子D可沿滑槽AB滑動,且,.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運動時,帶動N繞轉(zhuǎn)動,M處的筆尖畫出的橢圓記為C.以O(shè)為原點,AB所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.
(1)(Ⅰ)求橢圓C的方程;
(2)(Ⅱ)設(shè)動直線與兩定直線分別交于兩點.若直線總與橢圓有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導(dǎo)致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當(dāng)前最大流量的比值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用 (單位:元)關(guān)于月用電量 (單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求 的值;

(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點值代替,記 為該居民用戶1月份的用電費用,求 的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案