(本小題滿分12分)
如圖,設(shè)是橢圓的左焦點(diǎn),直線為對應(yīng)的準(zhǔn)線,直線軸交于點(diǎn),為橢圓的長軸,已知,且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:對于任意的割線,恒有;
(3)求三角形△ABF面積的最大值.

解(1)∵,∴,
又∵,∴,
,∴橢圓的標(biāo)準(zhǔn)方程為.     ………(3分)
(2)當(dāng)的斜率為0時(shí),顯然=0,滿足題意,
當(dāng)的斜率不為0時(shí),設(shè)方程為
代入橢圓方程整理得:
,,


,

,從而
綜合可知:對于任意的割線,恒有.        ………(8分)
(3)
即:,
當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號.
∴三角形△ABF面積的最大值是.………(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓x2sinα-y2cosα=1(0<α<2π)的焦點(diǎn)在x軸上,則α的取值范圍是(  )
A.(,π)B.(,C.(,π)D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,P為橢圓上的動(dòng)點(diǎn),F(xiàn)1、F2為橢圓的兩焦點(diǎn),當(dāng)點(diǎn)P不在x軸上時(shí),過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當(dāng)點(diǎn)P在x軸上時(shí),定義M與P重合.
(Ⅰ)求M點(diǎn)的軌跡T的方程;
(Ⅱ)已知,試探究是否存在這樣的點(diǎn)是軌跡T內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且△OEQ的面積?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((12分)
在區(qū)間[0,1]上給定曲線,軸.
(1)當(dāng)面積時(shí),求P點(diǎn)的坐標(biāo)。
(2)試在此區(qū)間確定的值,使的值最小,并求出最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為點(diǎn),且.
(1)求動(dòng)點(diǎn)的軌跡的方程;          
(2)軌跡上是否存在一點(diǎn)使得過的切線與直線平行?若存在,求出的方程,并求出它與的距離;若不存在,請說明理由.      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率. 直線)與曲線交于不同的兩點(diǎn),以線段為直徑作圓,圓心為
(1) 求橢圓的方程;
(2) 若圓軸相交于不同的兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

圓錐曲線上任意兩點(diǎn)連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦。已知點(diǎn)、是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),是垂直于軸的一條垂軸弦,直線分別交軸于點(diǎn)和點(diǎn)。

(1)試用的代數(shù)式分別表示
(2)若C的方程為(如圖),求證:是與和點(diǎn)位置無關(guān)的定值;
(3)請選定一條除橢圓外的圓錐曲線C,試探究經(jīng)過某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與和點(diǎn)位置無關(guān)的定值,寫出你的研究結(jié)論并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不論取何值,方程所表示的曲線一定不是(   )
A 拋物線       B 雙曲線      C 圓      D 直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 本小題10分)
k代表實(shí)數(shù),討論方程所表示的曲線.

查看答案和解析>>

同步練習(xí)冊答案