,其中.
(1)當(dāng)時,求函數(shù)在區(qū)間上的最大值;
(2)當(dāng)時,若恒成立,求的取值范圍.
(1);(2).

試題分析:本題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,最值和不等式等基礎(chǔ)知識,考查函數(shù)思想,分類討論思想,考查綜合分析和解決問題的能力.第一問,當(dāng)時,函數(shù)解析式確定,并不是分段函數(shù),這就降低了試題的難度,求導(dǎo)數(shù),判斷所求區(qū)間上函數(shù)的單調(diào)性,再求最值,第一問較簡單;第二問,由于函數(shù)是分段函數(shù),所以根據(jù)函數(shù)定義域把所求區(qū)間從斷開,充分考查了分類討論思想,求出每段范圍內(nèi)函數(shù)的最小值來解決恒成立問題.
試題解析:(1)當(dāng),時,,
,∴當(dāng)時, ,
∴函數(shù)上單調(diào)遞增,
.(4分)
(2)①當(dāng)時,,
,∴,∴上為增函數(shù),
故當(dāng)時,
②當(dāng)時,,,
(。┊(dāng)時,在區(qū)間上為增函數(shù),
當(dāng)時,,且此時;
(ⅱ)當(dāng),即時,在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù),
故當(dāng)時,,且此時;
(ⅲ)當(dāng),即時,在區(qū)間上為減函數(shù),
故當(dāng)時,.
綜上所述,函數(shù)上的最小值為
,得;由,得無解;,得無解;
故所求的取值范圍是.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若是函數(shù)的極值點,求的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(Ⅰ)證明:時,函數(shù)上單調(diào)遞增;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時,討論函數(shù)在[上的單調(diào)性;
(Ⅱ)如果,是函數(shù)的兩個零點,為函數(shù)的導(dǎo)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)的圖象與直線為常數(shù))相切,并且切點的橫坐標(biāo)依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點圖象的對稱中心,且,求點A的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 
(Ⅰ)若處的切線垂直于直線,求該點的切線方程,并求此時函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)的圖象在處的切線與圓相切,則的最大值是(    )
A.4B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)(x∈R)滿足>f(x),則   (    )
A.f(2)<f(0)B.f(2)≤f(0)
C.f(2)=f(0)D.f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)減區(qū)間為                   

查看答案和解析>>

同步練習(xí)冊答案