若函數(shù)的圖象與直線為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點(diǎn)圖象的對稱中心,且,求點(diǎn)A的坐標(biāo)
(Ⅰ)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值為;(Ⅱ) .

試題分析:(Ⅰ)直接根據(jù)導(dǎo)數(shù)和零的大小關(guān)系求得單調(diào)區(qū)間,并由單調(diào)性求得極值;(Ⅱ)先由導(dǎo)數(shù)判斷出在R內(nèi)單調(diào)遞增,說明對任意,都有,而,從而得證.
試題解析:(I)
的圖象與相切.
的最大值或最小值,即     (6分)
(II)又因?yàn)榍悬c(diǎn)的橫坐標(biāo)依次成公差為的等差數(shù)列.所以最小正周期為
,所以              (8分)
                 (9分)

       (10分)
得k=1,2,
因此對稱中心為               (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若函數(shù)在區(qū)間上的最大值為28,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

,其中.
(1)當(dāng)時,求函數(shù)在區(qū)間上的最大值;
(2)當(dāng)時,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知常數(shù)、都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為,的解集為
(Ⅰ)若的極大值等于,求的極小值;
(Ⅱ)設(shè)不等式的解集為集合,當(dāng)時,函數(shù)只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn)P在曲線上,點(diǎn)Q在曲線上,則|PQ|最小值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3+2bx2+cx+1有兩個極值點(diǎn)x1、x2,且x1∈[-2,-1],x2∈[1,2],則f(-1)的取值范圍是         (  )
A.[-,3]B.[,6]C.[3,12]D.[-,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,
(1)討論的單調(diào)區(qū)間;
(2)若對任意的,且,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)函數(shù)是,則   .

查看答案和解析>>

同步練習(xí)冊答案