【題目】已知函數(shù)f (x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是( )
A. x0∈R,f (x0)=0
B. 函數(shù)y=f (x)的圖象是中心對稱圖形
C. 若x0是f (x)的極小值點,則f (x)在區(qū)間(∞,x0)上單調(diào)遞減
D. 若x0是f (x)的極值點,則f ′(x0)=0
【答案】C
【解析】試題分析:由于三次函數(shù)的三次項系數(shù)為正值,當x→-∞時,函數(shù)值→-∞,當x→+∞時,函數(shù)值也→+∞,又三次函數(shù)的圖象是連續(xù)不斷的,故一定穿過x軸,即一定x0∈R,f(x0)=0,選項A中的結(jié)論正確;函數(shù)f(x)的解析式可以通過配方的方法化為形如(x+m)3+n(x+m)+h的形式,通過平移函數(shù)圖象,函數(shù)的解析式可以化為y=x3+nx的形式,這是一個奇函數(shù),其圖象關(guān)于坐標原點對稱,故函數(shù)f(x)的圖象是中心對稱圖形,選項B中的結(jié)論正確;由于三次函數(shù)的三次項系數(shù)為正值,故函數(shù)如果存在極值點x1,x2,則極小值點x2>x1,即函數(shù)在-∞到極小值點的區(qū)間上是先遞增后遞減的,所以選項C中的結(jié)論錯誤;根據(jù)導(dǎo)數(shù)與極值的關(guān)系,顯然選項D中的結(jié)論正確.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調(diào)遞增,則a的取值范圍是( )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ , ]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)若經(jīng)過點可以作出曲線的三條切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(k∈R)
(Ⅰ)若該函數(shù)是偶函數(shù),求實數(shù)k及f(log32)的值;
(Ⅱ)若函數(shù)g(x)=x+log3f(x)有零點,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列數(shù)列{an}的通項公式an=(-1)n(2n-1)(n∈N*),Sn為其前n項和.
(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表達式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(2)=1,f(x+4)=2f(x)+f(1),則f(3)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a>b>1,0<c<1,則( 。
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的周期為2,當x∈[0,2]時,f(x)=(x-1)2,如果g(x)=f(x)-log5x,則函數(shù)y=g(x)的零點個數(shù)為( 。
A. 1 B. 3 C. 5 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是( 。
(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com