在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,),半徑為1,點Q在圓C上運動,O為極點。
(1)求圓C的極坐標(biāo)方程;
(2)若點在直線OQ上運動,且滿足,求動點P的軌跡方程。
(1)
(2)
(1)設(shè)圓C上任一點M坐標(biāo)為()(如圖)。

    在△OCM中,,,,
    根據(jù)余弦定理,得
    整理得即為所求。
   。2)設(shè)Q)則有 ①
    設(shè),則
    又代入①得
    整理得點的軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,,過曲線上一點的切線,與曲線也相切于點,記點的橫坐標(biāo)為。

(1)用表示切線的方程;
(2)用表示的值和點的坐標(biāo);
(3)當(dāng)實數(shù)取何值時,?
并求此時所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線3x+4y+m=0與圓 (為參數(shù))沒有公共點,則實數(shù)m的取值范圍是    。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線焦點恰好是雙曲線的右焦點,且兩條曲線交點的連線過點,則該雙曲線的離心率為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的三個頂點是,
(1)求BC邊的高所在直線方程; (2)求的面積S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓過雙曲線的一個頂點和一個焦點,圓心在此雙曲線上,則圓心到雙曲線中心的距離為(  )                                                                                                                           
A. 4B.C.D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線ax+by+c=0同時要經(jīng)過第一、第二、第四象限,則a,b,c應(yīng)滿足(  )
A.a(chǎn)b>0,bc<0B.a(chǎn)b>0,bc>0
C.a(chǎn)b<0,bc>0D.a(chǎn)b<0,bc<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與直線平行,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的焦點F(c,  0)的弦中最短弦長是         (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案