已知集合{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個集合有n個元素,每一個集合都由連續(xù)正奇數(shù)組成,并且每一個集合中最大的數(shù)與后一個集合中最小的數(shù)是連續(xù)奇數(shù).
(I)求第n個集合中最小的數(shù)an的表達式;
(Ⅱ)設(shè)bn=
an-1
n
,求數(shù)列{
bn
2bn
}的前n項和Tn
解( I)設(shè)第n個集合中最小的數(shù)為an,則第n-1個集合中最小的數(shù)為an-1
又第n-1個集合中共有n-1個數(shù),且依次增加2,
∴an-1+2(n-1)=an,即an-an-1=2(n-1)(n≥2)…4分
∴an-1-an-2=2(n-2),
an-2-an-3=2(n-3)…
a2-a1=2.
以上各式相加得an-a1=2×
(n-1)(1+n-1)
2
=n2-n,
又a1=1,
∴an=n2-n+1(n≥2)…6分
驗證n=1時a1適合上式
∴an=n2-n+1…7分
( II)∵an=n2-n+1,
∴bn=
an-1
n
=
n2-n+1-1
n
=n-1…8分
∴Tn=
0
20
+
1
21
+
2
22
+…+
n-1
2n-1
=
1
21
+
2
22
+…+
n-1
2n-1

1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n-2
2n-1
+
n-1
2n

①-②得,
1
2
Tn=
1
21
+
1
22
+
1
23
+…+
1
2n-1
-
n-1
2n

∴Tn=2×
1
2
(1-
1
2n-1
)
1-
1
2
-
n-1
2n-1
=2-
1
2n-2
-
n-1
2n-1

即Tn=2-
1
2n-2
-
n-1
2n-1
…12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•淄博三模)已知集合{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個集合有n個元素,每一個集合都由連續(xù)正奇數(shù)組成,并且每一個集合中最大的數(shù)與后一個集合中最小的數(shù)是連續(xù)奇數(shù).
(I)求第n個集合中最小的數(shù)an的表達式;
(Ⅱ)設(shè)bn=
an-1
n
,求數(shù)列{
bn
2bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個集合有n個元素,每一個集合都由連續(xù)正奇數(shù)組成,并且每一個集合中最大的數(shù)與后一個集合中最小的數(shù)是連續(xù)奇數(shù).

(I)求第n個集合中最小的數(shù)的表達式;

(II)設(shè),求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年山東省淄博市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知集合{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個集合有n個元素,每一個集合都由連續(xù)正奇數(shù)組成,并且每一個集合中最大的數(shù)與后一個集合中最小的數(shù)是連續(xù)奇數(shù).
(I)求第n個集合中最小的數(shù)an的表達式;
(Ⅱ)設(shè)bn=,求數(shù)列{}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年山東省淄博市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知集合{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個集合有n個元素,每一個集合都由連續(xù)正奇數(shù)組成,并且每一個集合中最大的數(shù)與后一個集合中最小的數(shù)是連續(xù)奇數(shù).
(I)求第n個集合中最小的數(shù)an的表達式;
(Ⅱ)設(shè)bn=,求數(shù)列{}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案