【題目】已知函數(shù).
(I)求,的值;
(II)求;
(III)若,求.
【答案】(I),-11 ; (II)f(8x﹣1)=;(III)或
【解析】
(I)根據(jù)函數(shù)的解析式依次求值即可;(II)根據(jù)解析式對(duì)8x﹣1分三種情況依次求出,最后再用分段函數(shù)的形式表示出f(8x﹣1);(III)根據(jù)解析式對(duì)4a分三種情況,分別由條件列出方程求出a的值.
(I)由題意得,f(1+)=f(2+)=1+
=1+ ,
又f(﹣4)=﹣8+3=-5,則f(-5)=-10+3=-7,f(-7)=-14+3=-11,
所以;
(II)當(dāng)8x﹣1>1即x>時(shí),f(8x﹣1)=1+,
當(dāng)﹣1≤8x﹣1≤1即0≤x≤時(shí),f(8x﹣1)=(8x﹣1)2+1=64x2﹣16x+2,
當(dāng)8x﹣1<﹣1即x<0時(shí),f(8x﹣1)=2(8x﹣1)+3=16x+1,
綜上可得,f(8x﹣1)= ;
(III)因?yàn)?/span>,所以分以下三種情況:
當(dāng)4a>1時(shí),即a>時(shí),f(4a)==,解得a=,成立,
當(dāng)﹣1≤4a≤1時(shí),即-≤a≤時(shí),f(4a)=16a2+1=,解得a=,成立
當(dāng)4a<﹣1時(shí),即a<-時(shí),f(4a)=8a+3=,解得a=-,不成立,
綜上可得,a的值是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù), .
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)且時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當(dāng)b=0時(shí),若f(x)與g(x)的圖象有兩個(gè)交點(diǎn)A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 . (取e為2.8,取ln2為0.7,取 為1.4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在R上的奇函數(shù),且x≥0時(shí)有.
(1)寫(xiě)出函數(shù)的單調(diào)區(qū)間(不要證明);
(2)解不等式;
(3)求函數(shù)在[﹣m,m]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“三角保型函數(shù)”,給出下列函數(shù): ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函數(shù)”的是( )
A.①②
B.①③
C.②③④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于曲線(其中為自然對(duì)數(shù)的底數(shù))上任意一點(diǎn)處的切線,總存在在曲線上一點(diǎn)處的切線,使得∥,則實(shí)數(shù)的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x=4n+1,n∈Z}B={x|x=4n﹣3,n∈z},C={x|x=8n+1,n∈z},則A,B,C的關(guān)系是( )
A.C是B的真子集、B是A的真子集
B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=B
D.A=B=C
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=3﹣ an , bn是an與an+1的等差中項(xiàng),則數(shù)列{bn}的通項(xiàng)公式為( )
A.4×3n
B.4×( )n
C. ×( )n﹣1
D. ×( )n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x(x+ ).求:
(1)f(﹣8);
(2)f(x)在R上的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com