【題目】已知是定義在R上的奇函數(shù),且x≥0時有.
(1)寫出函數(shù)的單調區(qū)間(不要證明);
(2)解不等式;
(3)求函數(shù)在[﹣m,m]上的最大值和最小值.
【答案】(1)遞增區(qū)間為(-∞,-2],[2,+∞),遞減區(qū)間為[-2,2];(2)[﹣3,﹣1]∪[,+∞);(3)見解析
【解析】
(1)由函數(shù)的解析式結合函數(shù)的奇偶性可得的單調區(qū)間;
(2)由函數(shù)的奇偶性可得函數(shù)的解析式,則有或,解不等式即可得答案;
(3)由(1)知函數(shù)在(﹣∞,﹣2)上為增函數(shù),在(﹣2,2)上為減函數(shù),在(2,+∞)為增函數(shù);對m的值進行分情況討論,求出函數(shù)的最值,即可得答案;
(1)根據(jù)題意,是定義在R上的奇函數(shù),且x≥0時有;則的單調遞增區(qū)間為 ,[2,+∞),根據(jù)奇函數(shù)關于原點對稱,得遞減區(qū)間為[﹣2,0];(﹣∞,﹣2],所以f(x)的單調遞增區(qū)間為(-∞,-2],[2,+∞),遞減區(qū)間為[-2,2];
(2)是定義在R上的奇函數(shù),且x≥0時有,
設x<0,則﹣x>0,則,則,
綜合可得:,
若或,
解可得:﹣3≤x≤﹣1或,
則不等式的解集為[﹣3,﹣1]∪[,+∞);
(3)由(1)的結論,,在區(qū)間(﹣∞,﹣2)上為增函數(shù),在(﹣2,2)上為減函數(shù),在(2,+∞)為增函數(shù);
對于區(qū)間[﹣m,m],必有m>﹣m,解可得m>0;
故當0<m≤2時,,,
當2<m≤4時,,,
當m>4時,,,
科目:高中數(shù)學 來源: 題型:
【題目】如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD﹣A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內;(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函數(shù)f(x)=f1(x)·f2(x)的極值;
(2)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(,e)內有兩個零點,求正實數(shù)a的取值范圍;
(3)求證:當x>0時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[2019·武邑中學]已知關于的一元二次方程,
(1)若一枚骰子擲兩次所得點數(shù)分別是,,求方程有兩根的概率;
(2)若,,求方程沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+1)= ,且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x,若在區(qū)間[﹣1,3]內,函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,則實數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經過定點P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足 = ,若存在求m值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x+有如下性質:如果常數(shù)t>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)已知(x)=,x∈[0,1]利用上述性質,求函數(shù)f(x)的值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x+2a.若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com