本題有(1)、(2)、(3)三個(gè)選考題,請(qǐng)考生任選2題作答,如果多做,則按所做的前兩題計(jì)分.

(1)選修4﹣2:矩陣與變換曲線x2+4xy+2y2=1在二階矩陣的作用下變換為曲線x2﹣2y2=1,求M的逆矩陣M﹣1= .

(2)選修4﹣4:坐標(biāo)系與參數(shù)方程在曲線C1:(θ為參數(shù)),在曲線C1求一點(diǎn),使它到直線C2:(t為參數(shù))的距離最小,最小距離 .

(3)選修4﹣5:不等式選講設(shè)函數(shù)f(x)=.試求a的取值范圍 .

 

(1);(2)1.(3){a|a≥﹣3}.

【解析】

試題分析:(1)由detM==1,能求出M﹣1.

(2)將直線的參數(shù)方程化為普通方程,曲線C1任意點(diǎn)P的坐標(biāo)為(1+cosθ,sinθ),利用點(diǎn)到直線的距離公式P到直線的距離d,分子合并后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),與分母約分化簡(jiǎn)后,根據(jù)正弦函數(shù)的值域可得正弦函數(shù)的最小值,進(jìn)而得到距離d的最小值,并求出此時(shí)θ的度數(shù),即可確定出所求點(diǎn)P的坐標(biāo).

(3)由f(x)=,知|x+1|+|x﹣2|+a≥0,由此能求出a的取值范圍.

【解析】
(1)∵detM==1,

∴M﹣1==

故答案為:

(2)將直線C2化為普通方程得:x+y﹣1+2=0,

設(shè)所求的點(diǎn)為P(1+cosθ,sinθ),

則P到直線C2的距離d=

=|sin(θ+)+2|,

當(dāng)θ+=,即θ=時(shí),sin(θ+)=﹣1,d取得最小值1,

此時(shí)點(diǎn)P的坐標(biāo)為(1﹣,﹣).

故答案為:1.

(3)∵f(x)=,

∴|x+1|+|x﹣2|+a≥0,

∵|x+1|+|x﹣2|≥3,

∴a≥﹣3.

故答案為:{a|a≥﹣3}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:[同步]2015年人教B版必修二2.1平面直角坐標(biāo)系中的基本公式練習(xí)卷(解析版) 題型:選擇題

已知點(diǎn)A(x,5)關(guān)于點(diǎn)(1,y)的對(duì)稱點(diǎn)(﹣2,﹣3),則點(diǎn)P(x,y)到原點(diǎn)的距離是( )

A.4 B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2015年人教A版必修二4.3 空間直角坐標(biāo)系練習(xí)卷(解析版) 題型:

已知點(diǎn)A(﹣3,1,﹣4),則點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為( )

A.(﹣3,﹣1,4) B.(﹣3,﹣1,﹣4)

C.(3,1,4) D.(3,﹣1,﹣4)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2015人教A版必修二2.1空間點(diǎn)、直線、平面間位置關(guān)系練習(xí)卷(解析版) 題型:

下列說(shuō)法正確的是( )

A.三點(diǎn)確定一個(gè)平面

B.四邊形一定是平面圖形

C.梯形一定是平面圖形

D.平面α和平面β有不同在一條直線上的三個(gè)交點(diǎn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2015人教A版必修二2.1空間點(diǎn)、直線、平面間位置關(guān)系練習(xí)卷(解析版) 題型:

與正方體ABCD﹣A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)( )

A.有且只有1個(gè) B.有且只有2個(gè) C.有且只有3個(gè) D.有無(wú)數(shù)個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

矩陣A=的特征值是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

(2013•營(yíng)口二模)在一個(gè)二階矩陣M的變換作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(4,5)點(diǎn)B(3,﹣1)變成了點(diǎn)B′(5,1),那么矩陣M= ,圓x+2y﹣1=0經(jīng)矩陣M對(duì)應(yīng)的變換后的曲線方程 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:選擇題

如圖,AB是的直徑,PB,PE分別切⊙O于B,C,∠ACE=40°,則∠P=( )

A.60° B.70° C.80° D.90°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:選擇題

(2009•成都二模)已知曲線y=2sinx與曲線y=ax2+bx+的一個(gè)交點(diǎn)P的橫坐標(biāo)為,且兩曲線在交點(diǎn)P處的切線與兩坐標(biāo)軸圍成的四邊形恰好有外接圓,則a與b的值分別為( )

A. B.

C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案