【題目】把函數y=sinx(x∈R)的圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),再把所得圖象向左平行移動 個單位長度,得到的圖象所表示的函數是( )
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R
科目:高中數學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務次數進行統計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
分組 | 頻數 | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中的值;
(2)試估計他們參加社區(qū)服務的平均次數;
(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數在區(qū)間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在空間幾何體A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是邊長為2的等邊三角形,F為AC的中點. (Ⅰ)求證:BF∥平面ADE;
(Ⅱ)若AC=4,求證:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求幾何體C﹣BDF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數f(x),如果對于任意給定的等比數列{an},{f(an)}仍是等比數列,則稱f(x)為“保等比數列函數”.現有定義在(﹣∞,0)∪(0,+∞)上的如下函數:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數列函數”的f(x)的序號為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一汽車廠生產三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產量如下表(單位:輛):
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標準型 | 300 | 450 | 600 |
按類用分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有類轎車10輛.
(I)求的值;
(II)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(III)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經檢測它們的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數,設樣本平均數為,求的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為 ,且a1與a5的等差中項為18.
(1)求{an}的通項公式;
(2)若an=2log2bn , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的偶函數,在[0,+∞)上單調遞增.若a=f(log ),b=f(log ),c=f(﹣2),則a,b,c的大小關系是( )
A.a>b>c
B.b>c>a
C.c>b>a
D.c>a>b
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com