【題目】甲,乙,丙三位學生獨立地解同一道題,甲做對的概率為 ,乙,丙做對的概率分別為m,n(m>n),且三位學生是否做對相互獨立.記ξ為這三位學生中做對該題的人數,其分布列為:
ξ | 0 | 1 | 2 | 3 |
P | a | b |
(1)求至少有一位學生做對該題的概率;
(2)求m,n的值;
(3)求ξ的數學期望.
【答案】
(1)解:設“甲做對”為事件A,“乙做對”為事件B,“丙做對”為事件C,
由題意知, .
由于事件“至少有一位學生做對該題”與事件“ξ=0”是對立的,
所以至少有一位學生做對該題的概率是 .
(2)解:由題意知 ,
,
整理得 mn= , .
由m>n,解得 , .
(3)解:由題意知 = ,
b=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)= ,
∴ξ的數學期望為Eξ= = .
【解析】(1)利用“至少有一位學生做對該題”事件的對立事件的概率即可得出;(2)利用P(ξ=0)與P(ξ=3)的概率即可得出m,n;(3)利用(2)及 與b=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)即可得出a,b.
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的三個頂點的坐標分別是A(2,4),B(4,2),C(6,6).
(1)求角A的余弦值;
(2)作AB的底邊上的高CD,D為垂足,求點D的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是定義域為R的奇函數,當x∈[0,+∞)時,f(x)=x2-2x.
(1)寫出函數y=f(x)的解析式
(2)若方程f(x)=a恰有3個不同的解,求a的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2ωx﹣ )(ω>0)的最小正周期為4π,則( )
A.函數f(x)的圖象關于點( ,0)對稱
B.函數f(x)的圖象關于直線x= 對稱
C.函數f(x)的圖象在( ,π)上單調遞減
D.函數f(x)的圖象在( ,π)上單調遞增
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國經濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時間代號 | 1 | 2 | 3 | 4 | 5 |
儲蓄存款 (千億元) | 6 | 7 | 8 | 9 | 10 |
(1)求關于的回歸方程;
(2)用所求回歸方程預測該地區(qū)2015年的人民幣儲蓄存款.
附:回歸方程中, ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高中學校在2015年的一次體能測試中,規(guī)定所有男生必須依次參加50米跑、立定跳遠和一分鐘的引體向上三項測試,只有三項測試全部達標才算合格,已知男生甲的50米跑和立定跳遠的測試與男生乙的50米跑測試已達標,男生甲還需要參加一分鐘的引體向上測試,男生乙還需要參加立定跳遠和一分鐘引體向上兩項測試,若甲參加一分鐘引體向上測試達標的概率為p,乙參加立定跳遠和一分鐘引體向上的測試達標的概率均為 ,甲乙每一項測試是否達標互不影響,已知甲和乙同時合格的概率為 .
(1)求p的值,并計算甲和乙恰有一人合格的概率;
(2)在三項測試項目中,設甲達標的測試項目項數為x,乙達標的測試項目項數為y,記ξ=x+y,求隨機變量ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中.
(I)求證:AC⊥BD1;
(Ⅱ)是否存在直線與直線AA1,CC1,BD1都相交?若存在,請你在圖中畫出兩條滿足條件的直線(不必說明畫法及理由);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com