【題目】三棱柱中,平面平面, , ,點F為棱的中點,點E為線段上的動點.

1)求證:;

2)若點E為線段的中點,求點C到平面的距離.

【答案】1)證明見解析;(2.

【解析】

1)由題意,易證,由面面垂直可得平面,得到,由勾股定理可證,然后線面垂直的判定定理可證,由此即可結果.

2)采用等體積法,利用,即可證明結果.

證明:(1)因為,F中點,所以.

因為平面平面,平面平面平面,

所以平面,而平面,故

又因為,所以

又∵在三棱柱中,

,∴,

,故平面,

平面,所以

2,

在三棱柱中,

中點M,連,則,且,

,且,所以,且,

所以,且,所以四邊形為平行四邊形

所以,

由(1)知平面,所以平面

,,

所以,,,

所以,,

所以,

設點C到平面的距離為h,則

即點C到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性

(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調性;

2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒(SARS-COV-2)是2019年在人體中發(fā)現(xiàn)的冠狀病毒新毒株,主要通過呼吸道飛沫進行傳播,鑒于其特殊的傳播途徑,某科學醫(yī)療機構發(fā)現(xiàn)一次性醫(yī)用口罩起著一定的防護作用一般,口罩在投入市場前需做一系列的檢測,其中罩體污點、鼻梁條缺陷、耳繩異常等常規(guī)瑕疵肉眼可見,而耳繩尤為關鍵,會出現(xiàn)耳繩缺失、錯位、錯熔、漏熔四種情況 .現(xiàn)在生產商大多采用全自動生產線生產口罩,某工廠現(xiàn)有甲(1臺本體機拖2臺耳帶機)和乙(1臺本體機拖3臺耳帶機)兩條生產線,已知甲生產線的日產量為7萬只,乙生產線的日產量為10萬只,生產商為了了解是否有必要更換原有的甲生產線,在設備生產狀況相同,不計其他影響的狀態(tài)下,分別統(tǒng)計了兩條生產線生產的1000只口罩的耳繩情況,得到的統(tǒng)計數(shù)據如下:

耳繩情況

合格

缺失

錯位

錯熔

漏熔

甲生產線

950

9

19

11

11

乙生產線

900

19

35

25

21

1)從乙生產線生產的1000只口罩中隨機抽取3只,將合格品的只數(shù)記為,求的分布列和數(shù)學期望;

2)假設口罩的生產成本為0.4/只,若耳繩發(fā)生缺陷時可通過人工修復至合格來挽回損失。耳繩缺失、漏熔時人工修復費為0.01/只;錯位與錯熔時需更換耳繩,其中耳繩成本為0.06/根,人工修復費為0.02/只.

①以修復費的平均數(shù)作為判斷依據,判斷哪一條生產線在每日生產過程中挽回損失時所需費用較少?

②若經一次檢驗就合格的口罩,生產商以1/只的批發(fā)價銷售給市場,經人工修復的打八折出售。以該工廠的日平均收入為依據分析該生產商是否有必要更換甲生產線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產了一批零件,從中隨機抽取100個作為樣本,測出它們的長度(單位:厘米),按數(shù)據分成,,,,5組,得到如圖所示的頻率分布直方圖.以這100個零件的長度在各組的頻率代替整批零件長度在該組的概率.

1)估計該工廠生產的這批零件長度的平均值(同一組中的每個數(shù)據用該組區(qū)間的中點值代替);

2)規(guī)定零件長度在區(qū)間內的零件為優(yōu)等品,從這批零件中隨機抽取3個,記抽到優(yōu)等品的個數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是矩形,平面平面,,且,點中點.

1)證明:平面平面;

2)直線和平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中動圓P與圓外切,與圓內切.

1)求動圓圓心P的軌跡方程;

2)直線l過點且與動圓圓心P的軌跡交于A、B兩點.是否存在面積的最大值,若存在,求出的面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C1的參數(shù)方程為為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為

1)求曲線C1的普通方程和C2的直角坐標方程;

2)已知曲線C3的極坐標方程為,點A是曲線C3C1的交點,點B是曲線C3C2的交點,A、B均異于原點O,且,求實數(shù)α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標中,直線的參數(shù)方程為為參數(shù),.在以坐標原點為極點、x軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)若點在直線上,求直線的極坐標方程;

2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

查看答案和解析>>

同步練習冊答案