在x軸、y軸上截距相等且與圓(x+2
2
2+(y-3
2
2=1相切的直線L共有( 。l.
A、2B、3C、4D、6
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:與圓(x+2
2
2+(y-3
2
2=1相切,且在兩坐標(biāo)軸上截距相等的直線,必有過原點(diǎn)的直線和斜率為-1 的兩條直線.
解答: 解:圓的圓心(-2
2
,3
2
),半徑是1,
原點(diǎn)在圓外,與圓(x+2
2
2+(y-3
2
2=1相切,且在兩坐標(biāo)軸上截距相等的直線中過原點(diǎn)的直線有兩條;
斜率為-1的直線也有兩條;共4條.
故選:C
點(diǎn)評:本題考查圓的切線方程,截距相等問題,學(xué)生容易疏忽過原點(diǎn)的直線.容易出錯(cuò).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|2x-1|+|x+2|≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=-x2+2x+3的點(diǎn)到直線x-y+4=0的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一段河流,河的一側(cè)是以O(shè)為圓心,半徑為10
3
米的扇形區(qū)域OCD,河的另一側(cè)是一段筆直的河岸l,岸邊有一煙囪AB(不計(jì)B離河岸的距離),且OB的連線恰好與河岸l垂直,設(shè)OB與圓弧
CD
的交點(diǎn)為E.經(jīng)測量,扇形區(qū)域和河岸處于同一水平面,在點(diǎn)C,點(diǎn)O和點(diǎn)E處測得煙囪AB的仰角分別為45°,30°和60°.
(1)求煙囪AB的高度;
(2)如果要在CE間修一條直路,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosφ,2sinφ),φ∈(90°,180°),
b
=(1,1),則向量
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某算法的程序框圖如圖所示,若輸出結(jié)果為3,則可輸入的實(shí)數(shù)x的個(gè)數(shù)共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)求導(dǎo):y=abx+bax

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若函數(shù)f(x)滿足:(1)f(x)在D上為單調(diào)函數(shù);(2)存在區(qū)間[a,b]⊆D,使得f(x)在[a,b]上的值域?yàn)閇
a
2
,
b
2
],則稱函數(shù)f(x)為“取半函數(shù)”.若f(x)=logc(cx+t)(c>0,且c≠1)為“取半函數(shù)”,則t的取值范圍是( 。
A、(-
1
4
,
1
4
B、(0,
1
4
C、(0,
1
2
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點(diǎn)P(x,y)與兩定點(diǎn)F1(-
2
,0),F(xiàn)2
2
,0)的距離之和等于2
3

(Ⅰ)求動點(diǎn)P的軌跡方程C;
(Ⅱ)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與曲線C相交于A、B兩點(diǎn),試判斷是否存在k值,使以AB為直徑的圓過定點(diǎn)E?若存在求出這個(gè)k值,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案