19.已知i為虛數(shù)單位,復(fù)數(shù)z滿足$\overline z(1+i)=i$,則z=( 。
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求得$\overline{z}$,再由共軛復(fù)數(shù)的概念得答案.

解答 解:由$\overline z(1+i)=i$,得$\overline{z}=\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1}{2}+\frac{i}{2}$,
∴z=$\frac{1}{2}-\frac{i}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,圓O與x軸的正半軸的交點(diǎn)為A,點(diǎn)C、B在圓O上,且點(diǎn)C位于第一象限,點(diǎn)B的坐標(biāo)為($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α,若|BC|=1,則$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=x2+x-lnx在x=a處的切線與直線2x+2y-1=0垂直,則a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在區(qū)間[-3,3]中隨機(jī)取一個(gè)實(shí)數(shù)k,則事件“直線y=kx與圓(x-2)2+y2=1相交”發(fā)生的概率為( 。
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)$z=\frac{4-2i}{1+i}$(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=|2x•log${\;}_{\frac{1}{2}}$x|-1的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若復(fù)數(shù)(a2+i)(1+ai)(a∈R)是實(shí)數(shù),則實(shí)數(shù)a的值為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若等比數(shù)列{an}的前n項(xiàng)和Sn=a+($\frac{1}{2}$)n-2,則a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將函數(shù)y=sin2x的圖象向左平移φ(φ>0)個(gè)單位,得到的圖象恰好關(guān)于直線x=$\frac{π}{6}$對(duì)稱,則φ的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案