精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左右焦點分別為,,離心率,短軸長為

(1)求橢圓的標準方程;

(2)過的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

【答案】(1);(2)答案見解析.

【解析】試題分析:(1)由離心率,短軸為2a,可求得a,b,c.(2) 設直線的方程為,與橢圓方程組方程組,由韋達定理與三角形面積公式,轉化為關于t的函數,利用函數出求得最大值。

試題解析;(1)根據題意,得解得,

∴橢圓的標準方程為

(2)設,,不妨設,,

由題知,直線的斜率不為零,可設直線的方程為,

,

,,

,

,可知,則

,

,則,

時,,即在區(qū)間上單調遞增,

,∴,

即當時,的面積取得最大值3,

此時直線的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 是函數的導函數,則的圖象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產線的生產過程檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布N(μ,σ2).

(1)假設生產狀態(tài)正常,X表示一天內抽取的16個零件中其尺寸在(μ-3σμ+3σ)之外的零件數,P(X1)X的數學期望;

(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況需對當天的生產過程進行檢查.

①試說明上述監(jiān)控生產過程方法的合理性;

②下面是檢驗員在一天內抽取的16個零件的尺寸:

經計算得==9.97,s==≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,,16.

用樣本平均數作為μ的估計值,用樣本標準差s作為σ的估計值,,利用估計值判斷是否需對當天的生產過程進行檢查?剔除﹣3+3之外的數據,用剩下的數據估計μσ(精確到0.01).

附:若隨機變量Z服從正態(tài)分布N(μ,σ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為參數),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為:

(1)把直線的參數方程化為極坐標方程,把曲線的極坐標方程化為普通方程;

(2)求直線與曲線交點的極坐標(≥0,0≤).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司招聘員工,先由兩位專家面試,若兩位專家都同意通過,則視作通過初審予以錄用;若兩位專家都未同意通過,則視作未通過初審不予錄用;當這兩位專家意見不一致時,再由第三位專家進行復審,若能通過復審則予以錄用,否則不予錄用.設應聘人員獲得每位初審專家通過的概率為0.5,復審能通過的概率為0.3,各專家評審的結果相互獨立.

(Ⅰ)求某應聘人員被錄用的概率;

(Ⅱ)若4人應聘,設X為被錄用的人數,試求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,隨著一帶一路倡議的推進,中國與沿線國家旅游合作越來越密切,中國到一帶一路沿線國家的游客人也越來越多,如圖是2013-2018年中國到一帶一路沿線國家的游客人次情況,則下列說法正確的是( 。

①2013-2018年中國到一帶一路沿線國家的游客人次逐年增加

②2013-2018年這6年中,2016年中國到一帶一路沿線國家的游客人次增幅最小

③2016-2018年這3年中,中國到一帶一路沿線國家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著人們經濟收入的不斷增長,個人購買家庭轎車已不再是一種時尚車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關心的問題某汽車銷售公司作了一次抽樣調查,并統(tǒng)計得出某款車的使用年限與所支出的總費用(萬元)有如表的數據資料:

使用年限

2

3

4

5

6

總費用

2.2

3.8

5.5

6.5

7.0

(1) 在給出的坐標系中作出散點圖;

(2)求線性回歸方程中的、;

(3)估計使用年限為年時,車的使用總費用是多少?

(最小二乘法求線性回歸方程系數公式, .)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓關于直線對稱的圓為

(1)求圓C的方程;

(2)過點(1,0)作直線l與圓C交于A,B兩點,O是坐標原點,是否存在直線l,使得∠AOB=90°?若存在,求出所有滿足條件的直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)某農產品近幾年的產量統(tǒng)計如表:

年份

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

年產量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據表中數據,建立關于的線性回歸方程;

,

(2)若近幾年該農產品每千克的價格(單位:元)與年產量滿足的函數關系式為,且每年該農產品都能售完.

①根據(1)中所建立的回歸方程預測該地區(qū)2019()年該農產品的產量;

②當為何值時,銷售額最大?

查看答案和解析>>

同步練習冊答案