【題目】在菱形,點分別是棱的中點,將四邊形沿著轉動,使得重合,形成如圖所示多面體,分別取的中點.

(Ⅰ)求證:平面;

(Ⅱ)若平面平面,與平面所成的正弦值.

【答案】(1)見解析;(2)與平面所成的正弦值為.

【解析】

(Ⅰ)先證明平面,平面,從而得證平面平面,故平面;(Ⅱ)以為原點,如圖建立空間直角坐標系,求出平面的法向量與,帶入公式得到與平面所成的正弦值.

(Ⅰ)取中點,連接,由分別是的中點

,平面平面,又

平面平面,又平面

平面.

(Ⅱ)取中點,設交于點

,又平面平面

平面,在菱形中,

為原點,如圖建立空間直角坐標系,

,垂足為, 顯然中點,,

,,

,設平面的法向量為,,,由,令,

,又 ,

,即與平面所成的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,,AD是∠BAC的平分線,且.

1)求k的取值范圍;

2)若,求k為何值時,BC最短.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)設,若對任意給定的,關于的方程上有兩個不同的實數(shù)根,求實數(shù)的取值范圍(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點D,D1分別為AC,A1C1上的點.

(1)當的值等于何值時,BC1∥平面AB1D1;

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲袋內(nèi)摸出1個紅球的概率是,從乙袋內(nèi)摸出1個紅球的概率是,從兩袋內(nèi)各摸出1個球,則等于( )

A. 2個球不都是紅球的概率B. 2個球都是紅球的概率

C. 至少有1個紅球的概率D. 2個球中恰好有1個紅球的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐,平面,,且,,.

(1)求證:;

(2)在線段上,是否存在一點,使得二面角的大小為,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.

(1)求證:MN∥平面PAD;

(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,的中點.

1)求證:平面;

2)在線段上是否存在一點,使得平面平面?若存在,證明你的結論,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20種不同的零食,每100g可食部分包含的能量(單位:kJ)如下:

110 120 123 165 432 190 174 235 428 318

249 280 162 146 210 120 123 120 150 140

1)以上述20個數(shù)據(jù)組成總體,求總體平均數(shù)與總體標準差

2)設計恰當?shù)碾S機抽樣方法,從總體中抽取一個容量為7的樣本.

3)利用上面的抽樣方法,再抽取容量為7的樣本,這個樣本的平均數(shù)和標準差與(2)中的結果一樣嗎?為什么?

4)利用(2)中的隨機抽樣方法,分別從總體中抽取一個容量為10,13,16,19的樣本,分析樣本容量與樣本的平均數(shù)和標準差對總體的估計效果之間有什么關系.

查看答案和解析>>

同步練習冊答案