【題目】在菱形中,且,點分別是棱的中點,將四邊形沿著轉動,使得與重合,形成如圖所示多面體,分別取的中點.
(Ⅰ)求證:平面;
(Ⅱ)若平面平面,求與平面所成的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設,若對任意給定的,關于的方程在上有兩個不同的實數(shù)根,求實數(shù)的取值范圍(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點D,D1分別為AC,A1C1上的點.
(1)當的值等于何值時,BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲袋內(nèi)摸出1個紅球的概率是,從乙袋內(nèi)摸出1個紅球的概率是,從兩袋內(nèi)各摸出1個球,則等于( )
A. 2個球不都是紅球的概率B. 2個球都是紅球的概率
C. 至少有1個紅球的概率D. 2個球中恰好有1個紅球的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,平面,,,且,,.
(1)求證:;
(2)在線段上,是否存在一點,使得二面角的大小為,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.
(1)求證:MN∥平面PAD;
(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,,,為的中點.
(1)求證:平面;
(2)在線段上是否存在一點,使得平面平面?若存在,證明你的結論,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有20種不同的零食,每100g可食部分包含的能量(單位:kJ)如下:
110 120 123 165 432 190 174 235 428 318
249 280 162 146 210 120 123 120 150 140
(1)以上述20個數(shù)據(jù)組成總體,求總體平均數(shù)與總體標準差
(2)設計恰當?shù)碾S機抽樣方法,從總體中抽取一個容量為7的樣本.
(3)利用上面的抽樣方法,再抽取容量為7的樣本,這個樣本的平均數(shù)和標準差與(2)中的結果一樣嗎?為什么?
(4)利用(2)中的隨機抽樣方法,分別從總體中抽取一個容量為10,13,16,19的樣本,分析樣本容量與樣本的平均數(shù)和標準差對總體的估計效果之間有什么關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com