【題目】函數(shù)的一段圖象如圖所示.

(1)求函數(shù)的解析式;

(2)將函數(shù)的圖象向右平移個單位,得到的圖象,求直線

函數(shù)的圖象在內(nèi)所有交點的坐標.

【答案】(1);(2).

【解析】【試題分析】(1)依據(jù)題設(shè)中提供的函數(shù)圖像,分析探求出函數(shù)解析式中的參數(shù)的值;(2)借助題設(shè)條件建立方程組分析探求:

(1)由圖知A=2,T=π,于是ω=2,

y=2sin 2x的圖象向左平移,得y=2sin(2xφ)的圖象.

于是φ=2·,

f(x)=2sin.

(2)依題意得

g(x)=2sin=2sin. 故yg(x)=2sin. 由得sin.

∴2x+2kπ或2x+2kπ(k∈Z),

xkπ或xkπ(k∈Z). ∵x∈(0,π),

xx. ∴交點坐標為,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,,的中點

1求證:平面;

2在線段上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)函數(shù)在點處的切線方程為,求函數(shù)的解析式;

21的條件下,若是函數(shù)的零點,且,求的值;

3當(dāng)時,函數(shù)有兩個零點,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個,得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率

1若蛋糕店一天制作17個生日蛋糕,

求當(dāng)天的利潤單位:元關(guān)于當(dāng)天需求量單位:個,的函數(shù)解析式;

在當(dāng)天的利潤不低于750元的條件下,求當(dāng)天需求量不低于18個的概率

2若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的期望值為決定依據(jù),判斷應(yīng)該制作16個是17個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某產(chǎn)品的直徑長與標準值的差的絕對值不超過1mm時,則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標準值的差單位:mm,將所得數(shù)據(jù)分組,得到如下頻率分布表:

數(shù)

[-3,-2

0.10

[-2,-1

8

1,2]

0.50

2,3]

10

3,4]

合計

50

1.00

1將上面表格中缺少的數(shù)據(jù)填充完整.

2估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標準值的差落在區(qū)間1,3]內(nèi)的概率.

3現(xiàn)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線上有一個動點,過點作直線垂直于軸,動點上,且滿足為坐標原點),記點的軌跡為.

(I)求曲線的方程;

(II)若直線是曲線的一條切線,當(dāng)點到直線的距離最短時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形中,分別是,上的點,,的中點,交于點,沿折起,得到如圖2所示的三棱錐,其中.

1求證:平面平面

2,上的中點,中點,求異面直線所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和定點,由圓外一點向圓引切線,切點為,且滿足

(1)求實數(shù)間滿足的等量關(guān)系;

(2)若以為圓心的圓與圓有公共點,試求圓的半徑最小時圓的方程;

(3)當(dāng)點的位置發(fā)生變化,直線是否過定點,如果是,求出定點坐標,如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點,且它的圓心在直線上.

)求圓的方程;

)求圓關(guān)于直線對稱的圓的方程。

)若點為圓上任意一點,且點,求線段的中點的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案