【題目】關(guān)于的不等式,對(duì)于恒成立,則實(shí)數(shù)的取值范圍是________.
【答案】
【解析】
設(shè),則由得,則關(guān)于的不等式對(duì)任意恒成立等價(jià)于關(guān)于的不等式對(duì)任意恒成立.分別討論當(dāng),當(dāng)和當(dāng)的情況下一元二次不等式的恒成立問(wèn)題,依次求出t的范圍最后再求并集即可.
設(shè),則由得,
則關(guān)于的不等式對(duì)任意恒成立等價(jià)于關(guān)于的不等式對(duì)任意恒成立.
當(dāng)時(shí),不等式為,即①,
令,要使①對(duì)任意恒成立,
則有解得;
當(dāng)時(shí),不等式為,即②,
令,對(duì)稱(chēng)軸,且開(kāi)口向上,
則在上單調(diào)遞增,要使②對(duì)任意恒成立,
則有,解得,所以;
當(dāng)時(shí),設(shè),
易得當(dāng)時(shí),取得最小值,
則由不等式對(duì)任意恒成立得,
所以.
綜上所述,的取值范圍為.
故答案為:
【點(diǎn)晴】
本題考查不等式恒成立問(wèn)題、二次函數(shù)的性質(zhì).含絕對(duì)值的不等式恒成立問(wèn)題的常用解法:(1)對(duì)參數(shù)的取值范圍分類(lèi)討論,去掉絕對(duì)值符號(hào);(2)將不等式恒成立問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓上一動(dòng)點(diǎn),點(diǎn)分別是左、右兩個(gè)焦點(diǎn).面積的最大值為,且橢圓的長(zhǎng)軸長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn),在橢圓上,已知兩點(diǎn),,且以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn).求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:對(duì)于任意,不等式恒成立;
(Ⅱ)設(shè)函數(shù),,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,底面為菱形,且直線(xiàn)又棱 為的中點(diǎn),
(Ⅰ) 求證:直線(xiàn);
(Ⅱ) 求直線(xiàn)與平面的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,分別為的中點(diǎn),,將沿折起,得到四棱錐,為的中點(diǎn).
(1)證明:平面;
(2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若點(diǎn)P的坐標(biāo)為,且曲線(xiàn)與曲線(xiàn)交于C,D兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,分別為的中點(diǎn),,將沿折起,得到四棱錐,為的中點(diǎn).
(1)證明:平面;
(2)當(dāng)正視圖方向與向量的方向相同時(shí),此時(shí)的正視圖的面積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足;數(shù)列的前項(xiàng)和為,且滿(mǎn)足, , .
(1)求數(shù)列、的通項(xiàng)公式;
(2)是否存在正整數(shù),使得恰為數(shù)列中的一項(xiàng)?若存在,求所有滿(mǎn)足要求的;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對(duì)稱(chēng)的陰陽(yáng)兩魚(yú)互抱在一起,也被稱(chēng)為“陰陽(yáng)魚(yú)太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”.整個(gè)圖形是一個(gè)圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個(gè)半圓,給出以下命題:
①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是
②當(dāng)時(shí),直線(xiàn)y=ax+2a與白色部分有公共點(diǎn);
③黑色陰影部分(包括黑白交界處)中一點(diǎn)(x,y),則x+y的最大值為2;
④設(shè)點(diǎn)P(﹣2,b),點(diǎn)Q在此太極圖上,使得∠OPQ=45°,b的范圍是[﹣2,2].
其中所有正確結(jié)論的序號(hào)是( )
A.①④B.①③C.②④D.①②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com