已知
(1)求的單調(diào)增區(qū)間
(2)若在內(nèi)單調(diào)遞增,求的取值范圍.
(1)時的單調(diào)增區(qū)間為;時的單調(diào)增區(qū)間為.(2)
解析試題分析:本題主要考察函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系 ,通過求導(dǎo)研究函數(shù)的單調(diào)性是導(dǎo)數(shù)的基本應(yīng)用.
試題解析:(1)∵,,令∴ 時, 的單調(diào)增區(qū)間為;時的單調(diào)增區(qū)間為;
(2)由(1)知,,令∴ 時,在內(nèi)單調(diào)遞增;時的單調(diào)增區(qū)間為,要使在內(nèi)單調(diào)遞增,則,綜上可知
考點:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)當(dāng)時,求曲線在處的切線方程;
(2)若在區(qū)間上函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長為的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求證:函數(shù)在區(qū)間上存在唯一的極值點;
(2)當(dāng)時,若關(guān)于的不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為減函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有≥成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中m,a均為實數(shù).
(1)求的極值;
(2)設(shè),若對任意的,恒成立,求的最小值;
(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中m,a均為實數(shù).
(1)求的極值;
(2)設(shè),若對任意的,恒成立,求的最小值;
(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若為的極值點,求的值;
(2)若的圖象在點處的切線方程為,
①求在區(qū)間上的最大值;
②求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com