設(shè)點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,且|PF1|=2|PF2|,則雙曲線的離心率為( 。
A、
5
B、
5
2
C、
10
D、
10
2
分析:由P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
與圓x2+y2=a2+b2在第一象限的交點,推導(dǎo)出∠F1PF2=90°.再由|PF1|=2|PF2|,知|PF1|=4a,|PF2|=2a,由此求出c=
5
a,從而得到雙曲線的離心率.
解答:解:∵P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
與圓x2+y2=a2+b2在第一象限的交點,
∴點P到原點的距離|PO|=
a2+b2
=c

∴∠F1PF2=90°,
∵|PF1|=2|PF2|,
∴|PF1|-|PF2|=|PF2|=2a,∴|PF1|=4a,|PF2|=2a,
∴16a2+4a2=4c2
∴c=
5
a,
e=
c
a
=
5

故選A.
點評:本題考查雙曲線的性質(zhì)和應(yīng)用,解題時要注意公式的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)點P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
與圓x2+y2=a2+b2在第一象限的交點,F(xiàn)1、F2分別是雙曲線的左、右焦點,且|PF1|=3|PF2|,則雙曲線的離心率(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與圓x2+y2=a2+b2在第一象限的交點,其中F1,F(xiàn)2分別是雙曲線的左、右焦點,且|PF1|=2|PF2|,則雙曲線的離心率為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•韶關(guān)二模)設(shè)點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點,其中F1,F(xiàn)2分別是雙曲線的左、右焦點,若tan∠PF2F1=3,則雙曲線的離心率為
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與圓x2+y2=a2+b2的一個交點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,且|
PF1
|=
3
|
PF2
|,則雙曲線的離心率為( 。
A、
3
+1
2
B、
3
+1
C、
3
D、2
3

查看答案和解析>>

同步練習冊答案