(本題滿分12分)
計(jì)算   (1)  
(2) 

(1)原式=;(2)原式=。

解析試題分析:(1)對(duì)數(shù)式,要將不是同底的對(duì)數(shù)結(jié)合換底公式化為同底數(shù)的對(duì)數(shù)式來(lái)求解。
(2)指數(shù)式一般就是將底數(shù)化為2,3,5的性質(zhì)來(lái)結(jié)合指數(shù)冪的性質(zhì)得到。
解(1)原式=(6分)
(2)原式===(6分)
考點(diǎn):本題主要考查了指數(shù)式和對(duì)數(shù)式的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能熟練的運(yùn)用分?jǐn)?shù)指數(shù)冪的性質(zhì)和對(duì)數(shù)的運(yùn)算法則來(lái)表示,求解指數(shù)式和對(duì)數(shù)式的運(yùn)算問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù),在同一周期內(nèi),
當(dāng)時(shí),取得最大值;當(dāng)時(shí),取得最小值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若時(shí),函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月生產(chǎn)x臺(tái)某種產(chǎn)品的收入為R(x)元,成本為C(x)元,且R(x)=3 000x-20x2,C(x)=500x+4 000(x∈N*).現(xiàn)已知該公司每月生產(chǎn)該產(chǎn)品不超過(guò)100臺(tái).
(1)求利潤(rùn)函數(shù)P(x)以及它的邊際利潤(rùn)函數(shù)MP(x);
(2)求利潤(rùn)函數(shù)的最大值與邊際利潤(rùn)函數(shù)的最大值之差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

武漢市某地西瓜從2012年6月1日起開(kāi)始上市。通過(guò)市場(chǎng)調(diào)查,得到西瓜種植成本Q(單位:元/kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:

時(shí)間t
50
110
250
種植成本Q
150
108
150
求:1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西瓜種植成本Q與上市時(shí)間t的變化關(guān)系。
Q=at+b,       Q=,       Q=      a,       Q=a.
2)利用你選取的函數(shù),求西瓜種植成本最低時(shí)的上市天數(shù)及最低種植成本。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

商店出售茶壺和茶杯,茶壺單價(jià)為每個(gè)20元,茶杯單價(jià)為每個(gè)5元,該店推出兩種促銷(xiāo)優(yōu)惠辦法:
(1)買(mǎi)1個(gè)茶壺贈(zèng)送1個(gè)茶杯;
(2)按總價(jià)打9.2折付款。
某顧客需要購(gòu)買(mǎi)茶壺4個(gè),茶杯若干個(gè),(不少于4個(gè)),若設(shè)購(gòu)買(mǎi)茶杯數(shù)為x個(gè),付款數(shù)為y(元),試分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買(mǎi)同樣多的茶杯時(shí),兩種辦法哪一種更省錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
計(jì)算下列各式的值:
(1);     (2) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知二次函數(shù)的圖象過(guò)點(diǎn),且與軸有唯一的交點(diǎn).(1)求的表達(dá)式;
(2)當(dāng)時(shí),求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)最大值為,且
⑴求的解析式;
⑵求上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
某摩托車(chē)生產(chǎn)企業(yè),上年度生產(chǎn)摩托車(chē)的投入成本為1萬(wàn)元/輛,出廠價(jià)為1.2萬(wàn)元/輛,年銷(xiāo)售量為1000輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車(chē)投入成本增加的比例為,則出廠價(jià)相應(yīng)提高的比例為,同時(shí)預(yù)計(jì)年銷(xiāo)售量增加的比例為.已知年利潤(rùn)=(出廠價(jià)–投入成本)年銷(xiāo)售量.
(1)寫(xiě)出本年度預(yù)計(jì)的年利潤(rùn)與投入成本增加的比例的關(guān)系式;
(2)為使本年度的年利潤(rùn)比上年有所增加,問(wèn)投入成本增加的比例應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案