(本小題14分)橢圓的一個頂點為,離心率
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點,且滿足,,求直線的方程.
科目:高中數學 來源:2012-2013學年北京市高三第四次月考文科數學試卷(解析版) 題型:解答題
(本小題14分)
已知橢圓()過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年廣東惠州高二上學期期中考試文科數學試卷(解析版) 題型:解答題
(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.
(1)求橢圓的標準方程;
(2)若與均不重合,設直線的斜率分別為,求的值。
查看答案和解析>>
科目:高中數學 來源:2010-2011學年北京市東城區(qū)示范校高三第二學期綜合練習數學文卷 題型:解答題
.(本小題14分)橢圓的一個頂點為,離心率
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點,且滿足,,求直線的方程.
查看答案和解析>>
科目:高中數學 來源:2012屆山東省兗州市高二下學期期末考試數學(文) 題型:解答題
(本小題14分).已知橢圓離心率,焦點到橢圓上
的點的最短距離為。
(1)求橢圓的標準方程。
(2)設直線與橢圓交與M,N兩點,當時,求直線的方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com