【題目】已知函數(shù),函數(shù)的圖象經(jīng)過(guò),其導(dǎo)函數(shù)的圖象是斜率為,過(guò)定點(diǎn)的一條直線.
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.
【答案】(1)當(dāng)時(shí),在上為減函數(shù);
當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù).
(2)2
【解析】
對(duì)求導(dǎo),得到,按和進(jìn)行分類討論,利用導(dǎo)函數(shù)的正負(fù),得到的單調(diào)性;(2)根據(jù)題意先得到,然后得到的解析式,設(shè),按和分別討論,利用得到的單調(diào)性和最大值,然后研究其最大值恒小于等于時(shí),整數(shù)的最小值.
(1)函數(shù)的定義域是,,
當(dāng)時(shí),,所以在上為減函數(shù),
當(dāng)時(shí),令,則,
當(dāng)時(shí),,為減函數(shù),
當(dāng)時(shí),,為增函數(shù),
綜上,當(dāng)時(shí),在上為減函數(shù);
當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù).
(2)根據(jù)題意,,
設(shè),代入,可得,
令,
所以.
當(dāng)時(shí),因?yàn)?/span>,所以.
所以在上是單調(diào)遞增函數(shù),
又因?yàn)?/span>,
所以關(guān)于x的不等式不能恒成立.
當(dāng)時(shí),,
令,得.
所以當(dāng)時(shí),;
當(dāng)時(shí),,
因此函數(shù)在上是增函數(shù),在上是減函數(shù).
故函數(shù)的最大值為.
令,因?yàn)?/span>,
又因?yàn)?/span>在上是減函數(shù).
所以當(dāng)時(shí),.
所以整數(shù)的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和滿足
?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在上的函數(shù),若函數(shù)滿足:
①在區(qū)間上單調(diào)遞減,②存在常數(shù)p,使其值域?yàn)?/span>,則稱函數(shù)是函數(shù)的“逼進(jìn)函數(shù)”.
(1)判斷函數(shù)是不是函數(shù)的“逼進(jìn)函數(shù)”;
(2)求證:函數(shù)不是函數(shù),的“逼進(jìn)函數(shù)”
(3)若是函數(shù)的“逼進(jìn)函數(shù)”,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的數(shù)滿足,當(dāng)時(shí).若關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購(gòu)買意向的調(diào)查,將計(jì)劃在今年購(gòu)買5G手機(jī)的員工稱為“追光族”,計(jì)劃在明年及明年以后才購(gòu)買5G手機(jī)的員工稱為“觀望者”調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為該公司員工屬于“追光族”與“性別”有關(guān);
屬于“追光族” | 屬于“觀望者” | 合計(jì) | |
女性員工 | |||
男性員工 | |||
合計(jì) | 100 |
(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于“追光族”現(xiàn)從這6名中隨機(jī)抽取3名,求抽取到的3名中恰有1名屬于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com