已知函數(shù)f(x)=x2-3x+2,請設(shè)計一個算法,畫出算法的程序框圖,求f(3)+f(-1)的值.
考點:設(shè)計程序框圖解決實際問題
專題:計算題,算法和程序框圖
分析:根據(jù)已知的函數(shù)解析式,分別令自變量為3,-1,并將其代入函數(shù)解析式求出各函數(shù)值,最后累加各個函數(shù)值,并輸出,利用順序結(jié)構(gòu)可得算法及流程圖.
解答: 解:算法如下:
第一步:x=3;
第二步:y1=x2-3x+2;
第三步:x=-1;
第四步:y2=x2-3x+2;
第五步:y=y1+y2
第六步:輸出y1,y2,y.
程序框圖如圖:
點評:本題考查流程圖的概念,解答本題關(guān)鍵是掌握住本問題的解決方法,根據(jù)問題的解決方案制訂出符合要求的框圖,熟練掌握框圖語言,能正確用框圖把算法表示出來,這是設(shè)計流程圖的基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計一個計算1+2+3+…+50的值的算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x-2.
(1)求在點P(2,0)處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=4,前n項和為Sn,且Sn+1-3Sn-2n-4=0(n∈N+
(1)求數(shù)列{an}的通項公式;
(2)設(shè)函數(shù)f(x)=anx+an-1x2+…+a1xn,f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),令bn=f′(1),求數(shù)列{bn}的通項公式,并研究其單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0,求BC所在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二面角α-l-β大小為60°,半平面α、β內(nèi)分別有點A、B,AC⊥l于C、BD⊥l于D,已知AC=4、CD=5,DB=6,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
mx2-2x+3mx(m∈R).
(1)若m=1,f(x)在[0,4]上的最值;
(2)若m≤0,判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=x+4與圓x2+y2-3y-1=0有
 
個公共點.

查看答案和解析>>

同步練習(xí)冊答案