【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線有且只有一個(gè)公共點(diǎn).

(1)求實(shí)數(shù)的值;

(2)已知點(diǎn)的直角坐標(biāo)為,若曲線為參數(shù))相交于,兩個(gè)不同點(diǎn),求的值.

【答案】(1)(2)

【解析】

(1)求得曲線的平面直角坐標(biāo)方程和曲線的平面直角坐標(biāo)方程,再根據(jù)直線與圓的位置關(guān)系,即可求解.

(2)把直線的參數(shù)方程代入曲線的方程,根據(jù)參數(shù)的幾何意義,即可求解.

(1)由曲線的參數(shù)方程,消去參數(shù),得曲線的平面直角坐標(biāo)方程為

根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,得曲線的平面直角坐標(biāo)方程為,

曲線有且只有一個(gè)公共點(diǎn),即相切,有,(舍),

綜上.

(2),,曲線的參數(shù)方程為為參數(shù)),

知曲線是過定點(diǎn)的直線,把直線的參數(shù)方程代入曲線,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線交于,兩點(diǎn),點(diǎn)上,是坐標(biāo)原點(diǎn),若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的序號是____________(寫出所有正確命題的序號)

1為實(shí)數(shù)為有理數(shù)的充分不必要條件;

2的充要條件

3的必要不充分條件;

4,的充分不必要條件;

5的三個(gè)內(nèi)角為.“的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測量其直徑后,整理得到下表:

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(I)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):

;

.

判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級為甲;若僅滿足其中兩個(gè),則等級為乙,若僅滿足其中一個(gè),則等級為丙;若全部都不滿足,則等級為了.試判斷設(shè)備的性能等級.

(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”.

①從設(shè)備的生產(chǎn)流水線上隨機(jī)抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望;

②從樣本中隨意抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點(diǎn),是曲線上的一點(diǎn), ,,若的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在直線l:y=x-1,若存在過點(diǎn)P的直線交拋物線A,B兩點(diǎn),|PA|=|AB|,則稱點(diǎn)P為“正點(diǎn)”,那么下列結(jié)論中正確的是( )

A.直線l上的所有點(diǎn)都是“正點(diǎn)”

B.直線l上僅有有限個(gè)點(diǎn)是“正點(diǎn)”

C.直線l上的所有點(diǎn)都不是“正點(diǎn)”

D.直線l上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“正點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的空間幾何體中,四邊形為邊長為2的正方形,平面,,,且,.

1)求證:平面平面;

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,2),,過點(diǎn)P的動直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

(1)求點(diǎn)M的軌跡方程;

(2)當(dāng)|OP|=|OM|時(shí),l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國內(nèi)電商的不斷發(fā)展,快遞業(yè)也進(jìn)入了高速發(fā)展時(shí)期,按照國務(wù)院的發(fā)展戰(zhàn)略布局,以及國家郵政管理總局對快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過1kg的包裹收費(fèi)10元;重量超過1kg的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計(jì)算)需再收5.某縣SF分代辦點(diǎn)將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

重量(單位:kg

0,1]

1,2]

2,3]

3,4]

45]

件數(shù)

43

30

15

8

4

對近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

件數(shù)范圍

0~100

101~200

201~300

301~400

401~500

件數(shù)

50

150

250

350

450

天數(shù)

6

6

30

1

6

以上數(shù)據(jù)已做近似處理,將頻率視為概率.

1)計(jì)算該代辦未來5天內(nèi)不少于2天攬件數(shù)在101~300之間的概率;

2)①估計(jì)該代辦點(diǎn)對每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),該代辦點(diǎn)將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費(fèi)用.目前該代辦點(diǎn)前臺有工作人員3人,每人每天攬件不超過150件,日工資110.代辦點(diǎn)正在考慮是否將前臺工作人員裁減1人,試計(jì)算裁員前后代辦點(diǎn)每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

同步練習(xí)冊答案