【題目】已知函數(shù) 曲線在原點(diǎn)處的切線為 .

(1)證明:曲線軸正半軸有交點(diǎn);

(2)設(shè)曲線軸正半軸的交點(diǎn)為,曲線在點(diǎn)處的切線為直線,求證:曲線上的點(diǎn)都不在直線的上方 ;

(3)若關(guān)于的方程為正實(shí)數(shù))有不等實(shí)根求證:

【答案】(1)見解析(2)見解析(3)見解析

【解析】分析:(1)由條件可得然后利用單調(diào)性及零點(diǎn)存在定理可得存在 使得,從而得結(jié)論成立.(2)(1)可得曲線在點(diǎn)處的切線. ,,則,的單調(diào)性可得,從而可得結(jié)論成立.(3)結(jié)合以上兩問中的有關(guān)結(jié)論構(gòu)造新的函數(shù)進(jìn)行證明可得結(jié)論成立

詳解證明:(1)∵,

,

由已知得 ,解得

,

上單調(diào)遞增,在上單調(diào)遞減,

,

存在 使得

曲線軸正半軸有交點(diǎn)

(2)(1)可得曲線在點(diǎn)處的切線 ,

,

,

,

故當(dāng) 時(shí),,單調(diào)遞增,

當(dāng) 時(shí),,單調(diào)遞減,

所以對(duì)任意實(shí)數(shù)都有

即對(duì)任意實(shí)數(shù)都有 ,

故曲線上的點(diǎn)都不在直線的上方

(3)(1)

所以為減函數(shù).

設(shè)方程 的根為

由(2)可知,

所以.

,則

當(dāng) 時(shí), 單調(diào)遞增,

當(dāng) 時(shí),,單調(diào)遞減,

所以對(duì)任意的實(shí)數(shù),都有

.

設(shè)方程的根 ,

所以.

于是

,

,則,

所以 上為增函數(shù),

所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)常數(shù)

證明上是減函數(shù),在上是增函數(shù);

當(dāng)時(shí),求的單調(diào)區(qū)間;

對(duì)于中的函數(shù)和函數(shù),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某算法的算法框圖如圖所示,若將輸出的(x,y)值依次記為(x1 , y1),(x2 , y2),…,(xn , yn),…,則程序結(jié)束時(shí),共輸出(x,y)的組數(shù)為(
A.1006
B.1007
C.1008
D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線上,且與直線相切于點(diǎn)

1)求圓C的方程;

2)是否存在過點(diǎn)的直線與圓C交于兩點(diǎn),且的面積為O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)與溫度有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度/℃

21

23

24

27

29

32

產(chǎn)卵數(shù)/個(gè)

6

11

20

27

57

77

(1)若用線性回歸模型,求關(guān)于的回歸方程=x+(精確到0.1);

(2)若用非線性回歸模型求關(guān)的回歸方程為 且相關(guān)指數(shù)

( i )試與 (1)中的線性回歸模型相比,用 說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為,相關(guān)指數(shù)

。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)設(shè)不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實(shí)數(shù)使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請說明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有
(1)解不等式
(2)若f(x)≤t2﹣2at+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案