已知數(shù)列{an}中,a1=,點(diǎn)(n,2an+1-an)(n∈N*)在直線y=x上,
(1)計(jì)算a2,a3,a4的值;
(2)令bn=an+1-an-1,求證:數(shù)列{bn}是等比數(shù)列;
(3)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列{}為等差數(shù)列?若存在,試求出λ.的值;若不存在,請(qǐng)說明理由.
解 (1)由題意,2an+1-an=n,又a1=,所以2a2-a1=1,解得a2=,
同理a3=,a4=.
(2)因?yàn)?an+1-an=n,
所以bn+1=an+2-an+1-1=-an+1-1=,
bn=an+1-an-1=an+1-(2an+1-n)-1=n-an+1-1=2bn+1,即=
又b1=a2-a1-1=-,所以數(shù)列{bn}是以-為首項(xiàng),為公比的等比數(shù)列.
(3)由(2)得,bn=-×()=-3×(),Tn==3×()-.
又an+1=n-1-bn=n-1+3×(),所以an=n-2+3×()n,
所以Sn=-2n+3×=+3-.
由題意,記cn=.要使數(shù)列{cn}為等差數(shù)列,只要cn+1-cn為常數(shù).
cn===+(3-λ)×,
cn-1=+(3-λ)×,
則cn-cn-1=+(3-λ)×(-).
故當(dāng)λ=2時(shí),cn-cn-1=為常數(shù),即數(shù)列{}為等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
an |
1+2an |
1 |
2n-1 |
1 |
2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
n+1 |
2 |
2n |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
an |
lim |
n→∞ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com