精英家教網 > 高中數學 > 題目詳情
橢圓對稱軸在坐標軸上,短軸的一個端點與兩個焦點構成一個正三角形,焦點到橢圓上的點的最短距離是,求這個橢圓方程.
所求方程為+=1或+=1
,,所求方程為+=1或+=1.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓=1上任意一點P,由P向x軸作垂線段PQ,垂足為Q,點M在線段PQ上,且=2,點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線l交曲線E于不同的兩點G,H(點G在點F,H之間),且滿足=2,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點為橢圓的左焦點,點,動點在橢圓上,則的最小值為      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

過橢圓C: (a>b>0)的一個焦點且垂直于x軸的直線與橢圓C交于點(,1).(1)求橢圓C的方程;(2)設過點P(4,1)的動直線與橢圓C相交于兩個不同點A、B,與直線2x+y-2=0交于點Q,若,,求λ+μ的值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知A、B分別是橢圓的左右兩個焦點,O為坐標原點,點P)在橢圓上,線段PBy軸的交點M為線段PB的中點。
(1)求橢圓的標準方程;
(2)點C是橢圓上異于長軸端點的任意一點,對于△ABC,求的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心為坐標原點,一個長軸端點為,短軸端點和焦點所組成的四邊形為正方形,直線y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
(1)求橢圓方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點A(0,1)是橢圓x2+4y2=4上的一點,P是橢圓上的動點,當弦AP的長度最大時,則點P的坐標是_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的焦點為(-1,0)和(1,0),P是橢圓上的一點,且 與的等差中項,則該橢圓的方程為( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題



查看答案和解析>>

同步練習冊答案