【題目】設數(shù)列{an}的前n項和為Sn . 若Sn=2an﹣n,則 + + + =

【答案】
【解析】解:∵Sn=2an﹣n,∴n≥2時,an=Sn﹣Sn﹣1=2an﹣n﹣[2an﹣1﹣(n﹣1)],∴an=2an﹣1+1,化為:an+1=2(an﹣1+1),

n=1時,a1=2a1﹣1,解得a1=1.

∴數(shù)列{an+1}是等比數(shù)列,首項為2,公比為2.

∴an+1=2n,即an=2n﹣1,

= =

+ + + = + +…+ =1﹣ =

所以答案是:

【考點精析】通過靈活運用數(shù)列的通項公式,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當時函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域為,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學的投籃命中次數(shù), 乙組記錄中有一個數(shù)據(jù)模糊,無法確認, 在圖中以表示.

)如果乙組同學投籃命中次數(shù)的平均數(shù)為, 及乙組同學投籃命中次數(shù)的方差;

)在()的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名, 記事件A兩名同學的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點 F 時,有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2 截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)獨游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨比賽,該區(qū)甲、乙、丙、丁四所學校的學生積極參賽,參賽學生的人數(shù)如表所示:

中學

人數(shù)

30

40

20

10

為了解參賽學生的數(shù)獨水平,該科技館采用分層抽樣的方法從這四所中學的參賽學生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學各抽取多少名學生?
(Ⅱ)從參加問卷調(diào)查的30名學生中隨機抽取2名,求這2名學生來自同一所中學的概率;
(Ⅲ)在參加問卷調(diào)查的30名學生中,從來自甲、丙兩所中學的學生中隨機抽取2名,用X表示抽得甲中學的學生人數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式|x﹣a|<b的解集為{x|2<x<4}.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設實數(shù)x,y,z 滿足 + + =1,求x,y,z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若離散型隨機變量ξ的概率分布如表所示,則a的值為( )

ξ

﹣1

1

P

4a﹣1

3a2+a


A.
B.﹣2
C. 或﹣2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=

(1)試比較f(f(-3))f(f(3))的大小;

(2)畫出函數(shù)的圖象;

(3)f(x)=1,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的圓心M在y軸上,半徑為1.直線l:y=2x+2被圓M所截得的弦長為 ,且圓心M在直線l的下方.
(1)求圓M的方程;
(2)設A(t,0),B(t+5,0)(﹣4≤t≤﹣1),若AC,BC是圓M的切線,求△ABC面積的最小值.

查看答案和解析>>

同步練習冊答案