已知
lim
n→∞
(an+
n
n+1
)=b
(其中a,b為常數(shù)),則a2+b2=______.
由題意知
∵要使
lim
n→∞
(an+
n
n+1
)=
lim
n→∞
an2+(a+1)n
n+1
 極限存在
∴a=0
即 
lim
n→∞
(an+
n
n+1
)=
lim
n→∞
n
n+1
=
lim
n→∞
1
1+
1
n
=b
  又∵
lim
n→∞
1
n
=0
 根據(jù)極限的四則運(yùn)算可知
   b=1
 那么a2+b2=1 
 故答案為1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,
1
2
1
4
,…,
1
2n-1
},稱(chēng)集合B={m,n,p}
(其中m,n,p∈A)為集合A的一個(gè)三元子集,設(shè)A的所有三元子集的元素之和是Sn,則
lim
n→∞
Sn
n2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足a1=1,當(dāng)n∈N+時(shí),Sn=an-n-1.
(1)求a2,a3,a4;
(2)猜想an,并用數(shù)學(xué)歸納法證明你的猜想;
(3)已知
lim
n→∞
an
an+1+(a+1)n
=
1
2
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
lim
n→∞
3n
3n+1+an
=
1
3
,則a的取值范圍為
(-3,3)
(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
lim
n→∞
an2+cn
bn2+c
=2
lim
n→∞
bn+c
cn+a
=3
,則
lim
n→∞
an2+bn+c
cn2+an+b
=( 。
A、
1
6
B、
2
3
C、
3
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
lim
n→∞
(
n2+1
n+1
-an+b)=0
,則點(diǎn)M(a,b)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案