【題目】如圖,已知等腰梯形中,是的中點,,將沿著翻折成,使平面平面.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點P,使得平面,且.
【解析】
試題( I ) 根據(jù)直線與平面垂直的判定定理,需證明垂直平面內(nèi)的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進(jìn)而證得平面.(Ⅱ) 由( I )可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標(biāo)系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點P使得PM平行平面內(nèi)的一條直線即可.由于,故可取線段中點P,中點Q,連結(jié).則,且.由此即可得四邊形是平行四邊形,從而問題得證.
試題解析:( I ) 由題意可知四邊形是平行四邊形,所以,故.
又因為,M為AE的中點所以,
即
又因為,
所以四邊形是平行四邊形.
所以
故.
因為平面平面, 平面平面,平面
所以平面.
因為平面, 所以.
因為,、平面,
所以平面.
(Ⅱ) 以為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,.
平面的法向量為.
設(shè)平面的法向量為, 因為,,
, 令得,.
所以, 因為二面角為銳角,
所以二面角的余弦值為.
(Ⅲ) 存在點P,使得平面.
法一: 取線段中點P,中點Q,連結(jié).
則,且.
又因為四邊形是平行四邊形,所以.
因為為的中點,則.
所以四邊形是平行四邊形,則.
又因為平面,所以平面.
所以在線段上存在點,使得平面,.
法二:設(shè)在線段上存在點,使得平面,
設(shè),(),,因為.
所以.
因為平面, 所以,
所以, 解得, 又因為平面,
所以在線段上存在點,使得平面,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)過曲線上任意一點處的切線為,總存在過曲線上一點處的切線,使得,則實數(shù)的取值范圍為_____________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對角線BD所在的直線進(jìn)行翻折,在翻折過程中( )
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當(dāng)0≤x≤1時,
(i)函數(shù)f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對x∈[0,1]恒成立,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進(jìn)行數(shù)據(jù)分析,為了考察甲球員對球隊的貢獻(xiàn),現(xiàn)作如下數(shù)據(jù)統(tǒng)計:
球隊勝 | 球隊負(fù) | 總計 | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計 | 30 | e | n |
(1)求b,c,d,e,n的值,據(jù)此能否有97.7%的把握認(rèn)為球隊勝利與甲球員參賽有關(guān);
(2)根據(jù)以往的數(shù)據(jù)統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當(dāng)出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當(dāng)他參加比賽時,求球隊某場比賽輸球的概率;
當(dāng)他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔(dān)當(dāng)前鋒的概率;
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】智能手機(jī)的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學(xué)習(xí)時間.某市教育機(jī)構(gòu)從名手機(jī)使用者中隨機(jī)抽取名,得到每天使用手機(jī)時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是: ,.
(1)根據(jù)頻率分布直方圖,估計這名手機(jī)使用者中使用時間的中位數(shù)是多少分鐘? (精確到整數(shù))
(2)估計手機(jī)使用者平均每天使用手機(jī)多少分鐘? (同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)在抽取的名手機(jī)使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種農(nóng)作物可以生長在灘涂和鹽堿地,它的灌溉是將海水稀釋后進(jìn)行灌溉.某實驗基地為了研究海水濃度對畝產(chǎn)量(噸)的影響,通過在試驗田的種植實驗,測得了該農(nóng)作物的畝產(chǎn)量與海水濃度的數(shù)據(jù)如下表:
海水濃度 | |||||
畝產(chǎn)量(噸) | |||||
殘差 |
繪制散點圖發(fā)現(xiàn),可以用線性回歸模型擬合畝產(chǎn)量(噸)與海水濃度之間的相關(guān)關(guān)系,用最小二乘法計算得與之間的線性回歸方程為.
(1)求的值;
(2)統(tǒng)計學(xué)中常用相關(guān)指數(shù)來刻畫回歸效果,越大,回歸效果越好,如假設(shè),就說明預(yù)報變量的差異有是解釋變量引起的.請計算相關(guān)指數(shù)(精確到),并指出畝產(chǎn)量的變化多大程度上是由澆灌海水濃度引起的?
(附:殘差,相關(guān)指數(shù),其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com