【題目】已知函數(shù)
(I)討論的單調(diào)性;
(II)當(dāng),是否存在實(shí)數(shù),使得,都有?若存在求出的取值范圍;若不存在,請說明理由.
【答案】(I)當(dāng),在為增函數(shù);當(dāng),在為增函數(shù),在為減函數(shù); (II) .
【解析】
(I)先求得函數(shù)的定義域,對其求導(dǎo)后對分成兩類,討論函數(shù)的單調(diào)區(qū)間.(II)將不等式等價轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用其導(dǎo)數(shù)恒為非負(fù)數(shù)列不等式,分離常數(shù)后利用基本不等式求得的取值范圍.
(I) 的定義域?yàn)?/span>
,
當(dāng),則,在為增函數(shù),
,令,解得或(舍去),
所以,當(dāng) ,,在為增函數(shù);
當(dāng) ,,在為減函數(shù),
綜上所述,當(dāng),在為增函數(shù);
當(dāng),在為增函數(shù),在為減函數(shù)。
(II)不妨設(shè),則,
假設(shè)存在實(shí)數(shù),使得 ,都有,
則恒成立,
即恒成立,(*)
設(shè),即(*)等價于在為單調(diào)遞增
等價于在恒成立,
等價于在恒成立,
等價于在恒成立,
∴,當(dāng)且僅當(dāng)取等號,
∴,∴的取值范圍為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )
A.甲的邏輯推理能力指標(biāo)值優(yōu)于乙的邏輯推理能力指標(biāo)值
B.甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值
C.甲的六維能力指標(biāo)值整體水平優(yōu)于乙的六維能力指標(biāo)值整體水平
D.甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+-1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知六棱錐的底面是正六邊形,平面ABC,.則下列命題中正確的有( )
①平面平面PAE;
②;
③直線CD與PF所成角的余弦值為;
④直線PD與平面ABC所成的角為45°;
⑤平面PAE.
A.①④B.①③④C.②③⑤D.①②④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)A(﹣1,3),B(3,3)兩點(diǎn),且圓心C在直線x﹣y+1=0上.
(1)求圓C的方程;
(2)求經(jīng)過圓上一點(diǎn)A(﹣1,3)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
(Ⅰ)求四棱錐P﹣ABCD的體積V;
(Ⅱ)若F為PC的中點(diǎn),求證:平面PAC⊥平面AEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點(diǎn),且與曲線交于兩點(diǎn),試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P是圓上的動點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足.
(1)求動點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點(diǎn)的直線l與動點(diǎn)M的軌跡C交于不同的兩點(diǎn)A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com