(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)上為增函數(shù),求正實數(shù)的取值范圍;
(Ⅱ)設(shè),求證:

(Ⅰ)(Ⅱ)見解析

解析試題分析:(1)由已知,依題意:恒成立,即:恒成立,亦即恒成立,,
。
(2) .取,,
一方面,由(1)知上是增函數(shù),
所以,所以,即。
另一方面,設(shè)函數(shù),
所以上是增函數(shù),又,
時,,所以,即
綜上,
考點:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,構(gòu)造函數(shù)證明不等式
點評:構(gòu)造新函數(shù)來證明不等式是難點,學(xué)生不易掌握

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)(為自然對數(shù)的底數(shù)),).
(1)證明:;
(2)當時,比較的大小,并說明理由;
(3)證明:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)=為自然對數(shù)的底數(shù)),,記
(1)的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;
(2)若函數(shù)=0有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)函數(shù)..
(Ⅰ)時,求的單調(diào)區(qū)間;
(Ⅱ)當時,設(shè)的最小值為,若恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分12分)設(shè)函數(shù)f(x)= ,其中
(1)求f(x)的單調(diào)區(qū)間;(2)討論f(x)的極值    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù)
(1)若x=2是函數(shù)f(x)的極值點,求實數(shù)a的值.
(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
(3)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)時取得極值.
(I)求的值;
(II)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)=,.
(1)求函數(shù)在區(qū)間上的值域;
(2)是否存在實數(shù),對任意給定的,在區(qū)間上都存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數(shù)圖象上任意不同的兩點,如果對于函數(shù)圖象上的點(其中總能使得成立,則稱函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說明理由.

查看答案和解析>>

同步練習冊答案