設(shè)函數(shù)=為自然對數(shù)的底數(shù)),,記
(1)的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;
(2)若函數(shù)=0有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.

(1)上單調(diào)遞增.(2)實(shí)數(shù)a的取值范圍是(0,2)。

解析試題分析:(1),∴,
,則
上單調(diào)遞增,即上單調(diào)遞增.
(2)由(1)知上單調(diào)遞增,而,
有唯一解
的變化情況如下表所示:

x

0



0


遞減
極小值
遞增
 
又∵函數(shù)有兩個零點(diǎn),
∴方程有兩個根,即方程有兩個根 
,
解得
所以,若函數(shù)有兩個零點(diǎn),實(shí)數(shù)a的取值范圍是(0,2)
考點(diǎn):本題主要考查了導(dǎo)數(shù)的運(yùn)算,導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,函數(shù)零點(diǎn)。
點(diǎn)評:中檔題,利用導(dǎo)數(shù)研究函數(shù)單調(diào)區(qū)間,進(jìn)一步判斷函數(shù)零點(diǎn)情況,提供了解答此類問題的一般方法。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=a ln xx+1,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.(1)求a的值;(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)在區(qū)間上的最小值和最大值;
(Ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若曲線在點(diǎn)處與直線相切,求的值;
(Ⅱ)求函數(shù)的極值點(diǎn)與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)設(shè)函數(shù)
(Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實(shí)數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個不同的零點(diǎn),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)設(shè)    
(1)討論函數(shù)  的單調(diào)性。
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若a>0,求函數(shù)的最小值;
(2)若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f (x)>b恒成立的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù),曲線過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在上是增函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案