【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(Ⅰ)求證:平面BCD;
(Ⅱ)求點(diǎn)E到平面ACD的距離.
【答案】(Ⅰ)詳見解析 (Ⅱ)
【解析】
試題(Ⅰ)要證明平面BCD,需要證明,,證明時(shí)主要是利用已知條件中的線段長度滿足勾股定理和等腰三角形三線合一的性質(zhì)(Ⅱ)中由已知條件空間直角坐標(biāo)系容易建立,因此可采用空間向量求解,以為坐標(biāo)原點(diǎn),以方向?yàn)?/span>軸,軸,軸正方向建立空間直角坐標(biāo)系,
求出平面的法向量和斜線的方向向量,代入公式計(jì)算
試題解析:(Ⅰ)證明:為的中點(diǎn),,
,,,,
又,,
,均在平面內(nèi),平面
(Ⅱ)方法一:以為坐標(biāo)原點(diǎn),以方向?yàn)?/span>軸,軸,軸正方向建立空間直角坐標(biāo)系,則,
設(shè)為平面的法向量,則,
取,
,則點(diǎn)到平面的距離為
方法二:設(shè)點(diǎn)在上,且,連,
為的中點(diǎn),
平面,平面,
平面,平面
平面,平面平面,且交線為
過點(diǎn)作于點(diǎn),則平面
分別為的中點(diǎn),則平面,平面,
平面,點(diǎn)到平面的距離即,
故點(diǎn)到平面的距離為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?
(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項(xiàng)活動(dòng),問2名學(xué)生中有1名男生的概率是多少?
(3)學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?請說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1各條棱長均為4,且AA1⊥平面ABC,D為AA1的中點(diǎn),M,N分別在線段BB1和線段CC1上,且B1M=3BM,CN=3C1N,
(1)證明:平面DMN⊥平面BB1C1C;
(2)求三棱錐B1﹣DMN的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動(dòng)購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學(xué)校計(jì)劃將捐款以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎(jiǎng)學(xué)金500元;綜合考核21-50名,獲二等獎(jiǎng)學(xué)金300元;綜合考核50名以后的不獲得獎(jiǎng)學(xué)金.
(1)若與成線性相關(guān),則某天售出9箱水時(shí),預(yù)計(jì)收入為多少元?
(2)甲乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,不獲得獎(jiǎng)學(xué)金的概率均為,已知甲乙兩名學(xué)生獲得哪個(gè)等級的獎(jiǎng)學(xué)金相互獨(dú)立,求甲乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金之和的分布列及數(shù)學(xué)期望;
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn)和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)在上的最小值為0,求的值;
(3)當(dāng)時(shí),若函數(shù)在上既有最大值又有最小值,且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家商店使用一架兩臂不等長的天平稱黃金,一位顧客到店里購買黃金,售貨員先將的砝碼放在天平左盤中,取出一些黃金放在天平右盤中使天平平衡;再將的砝碼放在天平右盤中,再取出一些黃金放在天平左盤中使天平平衡;最后將兩次稱得的黃金交給顧客.你認(rèn)為顧客購得的黃金是小于,等于,還是大于?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象是由函數(shù)的圖象經(jīng)如下變換得到:先將圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長度.
(1)求函數(shù)的解析式,并求其圖象的對稱軸方程;
(2)已知關(guān)于的方程在內(nèi)有兩個(gè)不同的解、,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實(shí)施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進(jìn).遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué)的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”.某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進(jìn)行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個(gè)學(xué)生只能從表格中的20種課程組合選擇一種學(xué)習(xí).模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
組合學(xué)科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序號 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
組合學(xué)科 | 物政歷 | 物政地 | 物歷地 | 化生政 | 化生歷 | 化生地 | 化政歷 |
人數(shù) | 5人 | 0人 | 5人 | …… | 40人 | …… | …… |
序號 | 15 | 16 | 17 | 18 | 19 | 20 | |
組合學(xué)科 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | 總計(jì) |
人數(shù) | …… | …… | …… | …… | …… | …… | 200人 |
為了解學(xué)生成績與學(xué)生模擬選課之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析。
(1)樣本中選擇組合6號“物生歷”的有多少人?樣本中同時(shí)選擇學(xué)習(xí)物理和歷史的有多少人?
(2)從樣本選擇學(xué)習(xí)物理且學(xué)習(xí)歷史的學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人還要學(xué)習(xí)生物的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com