【題目】如圖,矩形和梯形所在的平面互相垂直,,.

(1)若的中點(diǎn),求證:平面

(2)若,求四棱錐的體積.

【答案】(1)見(jiàn)解析(2)

【解析】

(1)設(shè)ECDF交于點(diǎn)N,連結(jié)MN,由中位線(xiàn)定理可得MNAC,故AC∥平面MDF;

(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BGDF,又DFBE得出DF⊥平面BEG,從而得出DFEG,得出RtDEGRtEFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.

(1)證明:設(shè)交于點(diǎn),連接

在矩形中,點(diǎn)中點(diǎn),

的中點(diǎn),∴,

又∵平面,平面,

平面.

(2)取中點(diǎn)為,連接,

平面平面,

平面平面

平面,,

平面,同理平面,

的長(zhǎng)即為四棱錐的高,

在梯形,

∴四邊形是平行四邊形,,

平面

又∵平面,∴,

,,

平面.

注意到,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為: 為參數(shù), ),將曲線(xiàn)經(jīng)過(guò)伸縮變換: 得到曲線(xiàn).

(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;

(2)若直線(xiàn)為參數(shù))與相交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

當(dāng)時(shí),求函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次垃圾分類(lèi)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的100人的得分(滿(mǎn)分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規(guī)定問(wèn)卷得分不低于70分的市民稱(chēng)為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

(2)若問(wèn)卷得分不低于80分的人稱(chēng)為“環(huán)保達(dá)人”.視頻率為概率.

①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;

②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:

紅包金額(單位:元)

10

20

概率

現(xiàn)某市民要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠車(chē)間某部門(mén)有8個(gè)小組,在一次技能考試中成績(jī)情況分析如下:

小組

1

2

3

4

5

6

7

8

大于90分人數(shù)

6

6

7

3

5

3

3

7

不大于90分人數(shù)

39

39

38

42

40

42

42

38

1)求90分以上人數(shù)對(duì)小組序號(hào)的線(xiàn)性回歸方程;

附:回歸方程為,其中,.本題,.

2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為7組與8組的成績(jī)是否優(yōu)秀(大于90分)與小組有關(guān)系.附部分臨界值表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,如果對(duì)于的每一個(gè)含有個(gè)元素的子集,中必有個(gè)元素的和等于,稱(chēng)正整數(shù)為集合的一個(gè)相關(guān)數(shù)

1)當(dāng)時(shí),判斷是否為集合相關(guān)數(shù),說(shuō)明理由;

2)若為集合相關(guān)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,ABCD,ADDC,△ACB是腰長(zhǎng)為2的等腰直角三角形,平面CDEF⊥平面ABCD

(1)求證:BCAF;

(2)求幾何體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC.

1)求證:平面平面PBC;

2)若,MPB的中點(diǎn),求AM與平面PBC所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案