提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過40輛/千米時(shí),車流速度為80千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位: 輛/小時(shí))f ,可以達(dá)到最大,并求出最大值.

(1)(2)即當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值為5000輛/小時(shí).

解析試題分析:(1)本題是一個(gè)分段函數(shù),當(dāng)車流量小于等于40時(shí),速度為80千米/小時(shí),當(dāng)車流量大于40時(shí)小于或等于200時(shí)通過兩端點(diǎn)解出一次函數(shù)的解析式.(2)通過計(jì)算分段函數(shù)一個(gè)是一次函數(shù),一個(gè)是二次函數(shù)來確定最大值.本題屬于分段函數(shù)的應(yīng)用,這類應(yīng)用題關(guān)鍵就是審清題意.分段函數(shù)的最大值是分別求出各段函數(shù)的最大值,在求出總的最大值,這種思維要有.
試題解析:解:(1)由題意:當(dāng)時(shí),=80;當(dāng)時(shí),設(shè),
再由已知得   解得
故函數(shù)的表達(dá)式為  5分
(2)依題意并由(1)可得
當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),其最大值為;
當(dāng)時(shí),;
當(dāng)時(shí),有最大值5000.
綜上,當(dāng)時(shí),在區(qū)間上取得最大值5000.
即當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值為5000輛/小時(shí). 10分
考點(diǎn):

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)
(2)要使整幢寫字樓每平方米的平均開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,是一個(gè)矩形花壇,其中AB= 4米,AD = 3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對角線過C點(diǎn), 且矩形的面積小于64平方米.

(Ⅰ)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長度是多少時(shí),矩形的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市電力公司在電力供不應(yīng)求時(shí)期,為了居民節(jié)約用電,采用“階梯電價(jià)”方法計(jì)算電價(jià),每月用電不超過度時(shí),按每度元計(jì)費(fèi),每月用電超過度時(shí),超過部分按每度元計(jì)費(fèi),每月用電超過度時(shí),超過部分按每度元計(jì)費(fèi)
(Ⅰ)設(shè)每月用電度,應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù);
(Ⅱ)已知小王家第一季度繳費(fèi)情況如下:

月份
1
2
3
合計(jì)
繳費(fèi)金額
87元
62元
45元8角
194元8角
問:小王家第一季度共用了多少度電?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況。在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù)。當(dāng)橋上的的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明;當(dāng)時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀點(diǎn)的車輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若(0<x≤1),求x∈[-5,-4]時(shí),函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若在[-3,2]上具有單調(diào)性,求實(shí)數(shù)的取值范圍。
(2)若有最小值為-12,求實(shí)數(shù)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù),如果滿足:對任意,存在常數(shù),使得成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.
下面我們來考慮兩個(gè)函數(shù):,.
(Ⅰ)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;
(Ⅱ)若,函數(shù)上的上界是,求的取值范圍;
(Ⅲ)若函數(shù)上是以為上界的有界函數(shù), 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市一家庭今年一月份、二月份、和三月份煤氣用量和支付費(fèi)用如下表所示:

月份
用氣量(立方米)
煤氣費(fèi)(元)
1
4
4.00
2
25
14.00
3
35
19.00
(該市煤氣收費(fèi)的方法是:煤氣費(fèi)=基本費(fèi)+超額費(fèi)+保險(xiǎn)費(fèi))
若每月用氣量不超過最低額度立方米時(shí),只付基本費(fèi)3元+每戶每月定額保險(xiǎn)費(fèi)元;若用氣量超過立方米時(shí),超過部分每立方米付元.
⑴根據(jù)上面的表格求、、的值;
⑵若用戶第四月份用氣30立方米,則應(yīng)交煤氣費(fèi)多少元?

查看答案和解析>>

同步練習(xí)冊答案