【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

【答案】
(1)解:∵f(x)= +λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2 cosωx+λ

=﹣(cos2ωx﹣sin2ωx)+ sin2ωx+λ

= sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣ )+λ

∵圖象關(guān)于直線x=π對稱,∴2πω﹣ = +kπ,k∈z

∴ω= + ,又ω∈( ,1)

∴k=1時,ω=

∴函數(shù)f(x)的最小正周期為 =


(2)解:∵f( )=0

∴2sin(2× × )+λ=0

∴λ=﹣

∴f(x)=2sin( x﹣ )﹣

由x∈[0, ]

x﹣ ∈[﹣ , ]

∴sin( x﹣ )∈[﹣ ,1]

∴2sin( x﹣ )﹣ =f(x)∈[﹣1﹣ ,2﹣ ]

故函數(shù)f(x)在區(qū)間[0, ]上的取值范圍為[﹣1﹣ ,2﹣ ]


【解析】(1)先利用向量數(shù)量積運算性質(zhì),求函數(shù)f(x)的解析式,再利用二倍角公式和兩角差的余弦公式將函數(shù)f(x)化為y=Asin(ωx+φ)+k型函數(shù),最后利用函數(shù)的對稱性和ω的范圍,計算ω的值,從而得函數(shù)的最小正周期;(2)先將已知點的坐標代入函數(shù)解析式,求得λ的值,再求內(nèi)層函數(shù)的值域,最后將內(nèi)層函數(shù)看做整體,利用正弦函數(shù)的圖象和性質(zhì)即可求得函數(shù)f(x)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)證明:函數(shù)在區(qū)間上是減函數(shù);

(2)當時,證明:函數(shù)只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,直線為參數(shù))

寫出曲線的參數(shù)方程,直線的普通方程;

過曲線上任意一點作與夾角為30°的直線,交于點,求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點,求證: 平面;

(Ⅱ)若 ,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】購買一件售價為5 000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月付款一次,過1個月再付款一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復(fù)利計算(上月利息計入下月本金),那么每期應(yīng)付款多少元?(精確到1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且滿足a-2bsin A=0.

(1)求角B的大;

(2)若a+c=5,且a>c,b=,求·的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD為矩形,PA平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點.

求證:(1)MN平面PAD;

(2)平面QMN平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當a=1,求函數(shù)fx)在[1,e]上的最小值和最大值;

2)當a≤0,討論函數(shù)fx)的單調(diào)性;

3)是否存在實數(shù)a,對任意的x1,x20,+∞,x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通部門對某路段公路上行駛的汽車速度實施監(jiān)控,從速度在50﹣90km/h的汽車中抽取150輛進行分析,得到數(shù)據(jù)的頻率分布直方圖如圖所示,則速度在70km/h以下的汽車有輛.

查看答案和解析>>

同步練習(xí)冊答案