利用數(shù)學(xué)歸納法證明“(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1)(n∈N*)”時(shí),從“n=k”變到“n=k+1”時(shí),左邊應(yīng)增乘的是( )
A.2
B.2k+2
C.(2k+1)(2k+2)
D.4k+2
【答案】
分析:依題意,可寫出n=k時(shí)成立的等式與n=k+1時(shí)成立的等式,二者比較即可得到答案.
解答:解:假設(shè)n=k時(shí)等式成立,即(k+1)(k+2)(k+3)…(k+k)=2
k×1×3×…×(2k-1)(k∈N
*),
則當(dāng)n=k+1時(shí),應(yīng)有[(k+1)+1][(k+1)+2][(k+1)+3)]•…[(k+1)+(k+1)]=2
k+1×1×3×…×[2(k+1)-1](k∈N
*),
即(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)(k+3)…(k+k)•
=2
k+1×1×3×…×(2k+1)(k∈N
*),
∴從“n=k”變到“n=k+1”時(shí),左邊應(yīng)增乘的是
=2(2k+1)=4k+2.
故選D.
點(diǎn)評:本題考查數(shù)學(xué)歸納法,理清從“n=k”變到“n=k+1”時(shí)左邊項(xiàng)數(shù)的變化是關(guān)鍵,考查理解與推理運(yùn)算的能力,屬于中檔題.