精英家教網 > 高中數學 > 題目詳情
利用數學歸納法證明“
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
”的過程中,由“n=k”變成“n=k+1”時,不等式左邊的變化是( �。�
分析:觀察不等式
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
左邊的各項,他們都是以
1
n+1
開始,以
1
2n
項結束,共n項,當由n=k到n=k+1時,項數也由k變到k+1時,但前邊少了一項,后面多了兩項,分析四個答案,即可求出結論.
解答:解:n=k時,左邊=
1
k+1
+
1
k+2
+…+
1
k+k

n=k+1時,左邊=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
(k+1)+(k+1)

由“n=k”變成“n=k+1”時,
1
2k+1
+
1
2k+2
-
1
k+1

故選D.
點評:數學歸納法常常用來證明一個與自然數集N相關的性質,其步驟為:設P(n)是關于自然數n的命題,若1)(奠基) P(n)在n=1時成立;2)(歸納) 在P(k)(k為任意自然數)成立的假設下可以推出P(k+1)成立,則P(n)對一切自然數n都成立.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足an+1=
an-2
2an-3
,n∈N*,a1=
1
2

(Ⅰ)計算a2,a3,a4;(Ⅱ)猜想數列的通項an,并利用數學歸納法證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

利用數學歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
1
2
(n>1,n?N*)的過程中,用n=k+1時左邊的代數式減去n=k時左邊的代數式的結果為(  )
A、
1
2(k+1)
B、
1
2k+1
+
1
2(k+1)
C、
1
2k+1
-
1
2(k+1)
D、
1
2k+1

查看答案和解析>>

科目:高中數學 來源: 題型:

利用數學歸納法證明不等式1+
1
2
+
1
3
+…
1
2n-1
<f(n)(n≥2,n∈N*)的過程中,由n=k變到n=k+1時,左邊增加了( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an},a1=1,且滿足關系an-an-1=2(n≥2),
(1)寫出a2,a3,a4,的值,并猜想{an}的一個通項公式.
(2)利用數學歸納法證明你的結論.

查看答案和解析>>

同步練習冊答案